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Introduction



Recap: Efficient Algorithms

• Throughout this course, we adopted a definition of efficient

algorithm to mean any algorithm with a polynomial running time.

• We call all these class of algorithms P.

• P refers to the fact that the algorithms have polynomial running

time.

• This served as to identify problems with no known efficient solution

• However, we’ve seen that some modified versions of problems we

discussed don’t have efficient solutions.

• Instead, the best known algorithms for these class of problems are

exponential at best (if they exist).
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Example: Shortest Path in a Graph

• Original Problem:

• Find the shortest path from a source node to a destination node in a

weighted graph.

• DP/Greedy Solution: Algorithms like Dijkstra’s algorithm or

Bellman-Ford algorithm solve this problem in polynomial time.

• Modified Problem:

• Introduce negative weight cycles in the graph, or constraints that

paths must pass through specific intermediate nodes or avoid certain

nodes altogether.

• Finding shortest paths in such modified graphs can make the

problem NP-hard or undecidable.
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Example: Subset Sum Problem

• Original Problem:

• Determine if there is a subset of a given set of integers that sums up

to a given target.

• DP Solution: The problem can be solved using dynamic

programming in pseudo-polynomial time, specifically O(n ∗ target).

• Modified Problem:

• Add additional constraints such as requiring certain subsets to be

excluded from consideration or requiring that the subset elements

satisfy additional arbitrary constraints.

• These modifications can make the problem NP-hard.
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Example: Minimum Spanning Tree (MST)

• Original Problem:

• Find a subset of edges in a weighted graph that connects all vertices

with the minimum total edge weight.

• Greedy Solution: Algorithms like Kruskal’s or Prim’s algorithm solve

this problem in polynomial time.

• Modified Problem:

• Add constraints that some edges must or must not be included, or

introduce dependencies between edges, where selecting one edge

requires or forbids selecting another.

• These modifications can turn the problem into an NP-hard problem.
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Example: Traveling Salesman Problem (TSP)

• Original Problem:

• Find the shortest possible route that visits each city exactly once and

returns to the origin city.

• DP Solution: The problem can be solved using dynamic

programming with Held-Karp algorithm in O(n2 ∗ 2n) time, which is

not polynomial but is the best known exact approach.

• Modified Problem:

• Introduce constraints such as visiting certain cities in a specific order

or having variable costs that depend on the sequence of cities visited.

• These constraints can turn the problem into an even more complex

version that remains NP-hard and lacks a known polynomial-time

solution.
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Example: Graph Coloring

• Original Problem:

• Assign colors to the vertices of a graph so that no two adjacent

vertices share the same color using the fewest number of colors.

• Greedy/DP Solution: The problem can be approximated using

greedy algorithms, such as the Welsh-Powell algorithm, which can

provide a solution in polynomial time for certain types of graphs.

• Modified Problem:

• Introduce constraints such as specific vertices needing to be a certain

color or certain pairs of vertices needing to have different colors.

• Add restrictions where the coloring must adhere to additional

conditions, like distance constraints (vertices within a certain

distance must also have different colors).

• These modifications can turn the problem into an NP-hard problem,

making it infeasible to solve in polynomial time.
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Example: Observation

• Fine Line Between Easy and Hard Problems

• Problems that have efficient solutions can be easily modified to have

no known efficient solutions.

• The reverse is also true: hard problems can be solved efficiently if we

impose certain constraints on the problem definition.

• Practical Importance

• These problems are very practical in the real world, and having

efficient solutions for them can make a significant impact.
• Many of these problems are interconnected.

• Solving one hard problem could potentially lead to solutions for other

related problems.

• Role of Heuristics and Approximation Algorithms

• For problems that are difficult or impossible to solve exactly in

polynomial time, heuristics and approximation algorithms can provide

near-optimal solutions in a reasonable amount of time.

• Understanding when and how to use these techniques is crucial for

tackling real-world problems that are NP-hard.
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The Clique Problem



The Clique Problem

• Given an undirected graph, determine if there exists a clique of size

k.

• A clique is a subset of vertices such that every two vertices in the

subset are connected by an edge.

• Given an undirected graph G, the problem can take different forms

• Is the graph G a clique ?

• A polynomial solution exists - O(|V |2)

• Is there a clique within G ?
• Is there a clique within G of size k?

• Which nodes and edges make such a clique ?

• No known polynomial-time solution exists for the last three

• Brute Force Solution: Check all possible subsets of vertices of size

k to see if they form a clique, which takes exponential time.
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The Clique Problem: Example
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The Clique Problem: Example
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The Clique Problem: NP

• No known polynomial-time solution exists for the last three

• Brute Force Solution: Check all possible subsets of vertices of size

k to see if they form a clique, which takes exponential time.

• Since verifying a proposed clique takes polynomial time the clique

problem is NP
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Definitions: Certificate

• A certificate is a solution to a problem that can be verified in

polynomial time.

• For NP problems, given a ”yes” answer, a certificate exists that can

be checked quickly to confirm the answer is correct.

• Example: For the Hamiltonian Path problem, a certificate is a

specific sequence of vertices that forms a Hamiltonian Path.

• For Co-NP problems, given a ”no” answer, a certificate exists that

can be checked quickly to confirm the answer is correct.

• Example: For the Composite Number problem, a Co-NP problem, a

certificate for a ”no” answer (i.e., the number is prime) is a

demonstration that there are no factors other than 1 and the number

itself.
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P and NP

• A decision yes/no problem of input size n can be solved in O(nc)

time for any constant c, the problem is in the complexity class P

(Polynomial)

• E.g., Is the graph G a clique ?

• If, for all yes instances of a decision problem of input size , there

exists a certificate, that can be verified in polynomial time, we say

it is in class NP (Nondeterministic Polynomial)

• E.g., Is there a clique within G ?

• If we find some magical procedure to propose a sub graph we can

verify if it is a clique in polynomial time

• These class of problems are yes heavy - we can check yes cases in

polynomial time - not the no cases
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NP: General Outline

proc solve(input):

// This step is not well defined, hence, non-deterministic

// If this step is done in polynomial time

// then we have a polynomial solution

certificates = generateAllPossibleSolutions(input)

// Verify the given solutions for the problem

// This should run in polynomial time

for certificate in certificates:

if verifySolution(input, certificate):

return certificate

return "No solution found"

14



NP vs Co-NP

• If you a have decision problem where negative instances are verified

in polynomial time but you don’t need to verify yes instances we say

they are Co-NP (Complement is in NP)

• P ⊆ NP

• P ⊆ Co − NP

• For any instance of a problem in P, an empty certificate is sufficient

• We can verify that it is yes or no in polynomial time

• x ∈ NP is a statement of ease, not a statement of hardness

• NP is an upper limit not a lower limit
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Definitions: P (Polynomial Time)

• P (Polynomial Time)

• P is a class of problems that can be solved by an algorithm in

polynomial time.

• Polynomial time means that the time complexity of the algorithm is

O(nk) for some constant k, where n is the size of the input.

• Examples: Sorting algorithms like Merge Sort and Quick Sort, and

searching algorithms like Binary Search.

• NP (Nondeterministic Polynomial Time)

• NP is a class of problems for which a given solution can be verified in

polynomial time.

• A problem is in NP if, for every instance where the answer is ”yes,”

there is a certificate (or witness) that can be checked quickly (in

polynomial time) to confirm the answer.

• Examples: Clique Problem, Satisfiability (SAT), Hamiltonian Path,

Subset Sum.

16



Definitions: P (Polynomial Time)

• P (Polynomial Time)

• P is a class of problems that can be solved by an algorithm in

polynomial time.

• Polynomial time means that the time complexity of the algorithm is

O(nk) for some constant k, where n is the size of the input.

• Examples: Sorting algorithms like Merge Sort and Quick Sort, and

searching algorithms like Binary Search.

• NP (Nondeterministic Polynomial Time)

• NP is a class of problems for which a given solution can be verified in

polynomial time.

• A problem is in NP if, for every instance where the answer is ”yes,”

there is a certificate (or witness) that can be checked quickly (in

polynomial time) to confirm the answer.

• Examples: Clique Problem, Satisfiability (SAT), Hamiltonian Path,

Subset Sum.

16



Definitions: P (Polynomial Time)

• P (Polynomial Time)

• P is a class of problems that can be solved by an algorithm in

polynomial time.

• Polynomial time means that the time complexity of the algorithm is

O(nk) for some constant k, where n is the size of the input.

• Examples: Sorting algorithms like Merge Sort and Quick Sort, and

searching algorithms like Binary Search.

• NP (Nondeterministic Polynomial Time)

• NP is a class of problems for which a given solution can be verified in

polynomial time.

• A problem is in NP if, for every instance where the answer is ”yes,”

there is a certificate (or witness) that can be checked quickly (in

polynomial time) to confirm the answer.

• Examples: Clique Problem, Satisfiability (SAT), Hamiltonian Path,

Subset Sum.

16



Definitions: P (Polynomial Time)

• P (Polynomial Time)

• P is a class of problems that can be solved by an algorithm in

polynomial time.

• Polynomial time means that the time complexity of the algorithm is

O(nk) for some constant k, where n is the size of the input.

• Examples: Sorting algorithms like Merge Sort and Quick Sort, and

searching algorithms like Binary Search.

• NP (Nondeterministic Polynomial Time)

• NP is a class of problems for which a given solution can be verified in

polynomial time.

• A problem is in NP if, for every instance where the answer is ”yes,”

there is a certificate (or witness) that can be checked quickly (in

polynomial time) to confirm the answer.

• Examples: Clique Problem, Satisfiability (SAT), Hamiltonian Path,

Subset Sum.

16



Definitions: Reduction

• Reduction is a way of converting one problem to another problem.

• A problem A can be reduced to problem B if an algorithm for solving

B efficiently (in polynomial time) can be used to solve A efficiently.

• Reductions are used to prove the hardness of problems.

• Examples: Reducing 3-SAT to the Hamiltonian Cycle problem to
prove Hamiltonian Cycle is NP-hard.

• 3-SAT <p Hamiltonian Cycle

• A polynomial-time reduction is a process of transforming one

problem into another in polynomial time.

• Polynomial-time reductions are used to show that a problem is

NP-hard.

• Reductions are transitive but not symmetric.

• If X <p Y and Y <p Z , then X <p Z .

• X <p Y ⇏ Y <p X

17
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Definitions: NP-hard

• A problem is NP-hard if every problem in NP can be reduced to it

in polynomial time.

• In practice we only need to show reduction to one well known NP

hard problem as reduction is transitive

• NP-hard problems are at least as hard as the hardest problems in NP.

• Solving an NP-hard problem efficiently (in polynomial time) would

imply that P = NP.

• NP-hard problems do not have to be in NP; they might not even

have solutions that can be verified in polynomial time.

• Examples: Halting Problem, Traveling Salesman Problem (general

case), 3-SAT.

• x ∈ NP − Hard is a statement of hardness (a lower limit)

18
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NP vs NP-hard

• NP (Nondeterministic Polynomial Time)

• NP is a class of problems for which a given solution can be verified in

polynomial time.

• If a problem is in NP, it means that, given a ”yes” answer, there is a

certificate (or witness) that can be checked quickly (in polynomial

time) to confirm the answer is correct.

• Examples: SAT (Satisfiability), Hamiltonian Path, Subset Sum.

• NP-hard
• A problem is NP-hard if every problem in NP can be reduced to it in

polynomial time.

• NP-hard problems are at least as hard as the hardest problems in NP.

• Solving an NP-hard problem efficiently (in polynomial time) would

imply that P = NP.

• NP-hard problems do not have to be in NP; they might not even

have solutions that can be verified in polynomial time.

• Examples: Halting Problem, Traveling Salesman Problem (general

case), 3-SAT.
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Definitions: NP-Complete

• A problem is said to be NP-Complete if it is in both NP and NP-hard

• It is NP in that we can verify a certificate in polynomial time

• It is NP-hard, meaning it we can reduce all NP problems to it

• Remember, in practice we only need to reduce one known NP-hard

problem

• Problems in NP-complete have the property that they are difficult

but if one is solved efficiently, all will be solved automatically
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Definitions: NP-complete

• NP-complete

• NP-complete problems are a subset of NP problems that are both in

NP and NP-hard.

• A problem is NP-complete if it is in NP and as hard as any problem

in NP, meaning every problem in NP can be reduced to it in

polynomial time.

• If any NP-complete problem can be solved in polynomial time, then

all problems in NP can be solved in polynomial time (P = NP).

• Examples: Satisfiability (SAT), Traveling Salesman Problem

(decision version), 3-SAT.
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NP vs NP-hard vs NP Complete

• NP-hard problems encompass both problems

in NP and problems that are even harder.

• All NP-complete problems are both in NP

and NP-hard.

• If any NP-complete problem can be solved in

polynomial time, then all NP problems can

be solved in polynomial time (P = NP).

• However, solving an NP-hard problem does

not necessarily provide a polynomial-time

solution for all NP problems

• Unless the problem is also NP-complete.

Image Source: https://medium.com/intuitionmath/p-np-would-mean-were-a-bunch-

of-dumb-apes-20c6e50f0ba3
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Decision Problems vs Optimization Problems

• Let’s assume we can solve the clique decision problem in polynomial

time

• i.e., Is there a clique of size k in graph G

• Can we use it to find the size of the largest clique efficiently?

• Assume this solution is a produce called clque(G , k) and has a

running time of nc

• We can use search (binary or linear) for k = |G | → 0

• This takes |G | ∗ nc , which is still polynomial

• What about identifying what the clique is?

• First find the maximum value k
• Then, try to remove a vertex one at a time and see if the remaining

graph is clique

• if it is not, this vertex is required in the largest clique so put it back

and continue to the other nodes

• Stop when you are left with k vertices
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The Independent Set Problem



The Independent Set Problem

• Given an undirected graph, determine if there exists an independent

set of size k.

• An independent set is a subset of vertices such that no two vertices

in the subset are connected by an edge.

• The problem can take different forms:

• Is the graph G an independent set?

• Is there an independent set within G?

• Is there an independent set within G of size k?

• Which nodes make such an independent set?

• No known polynomial-time solution exists for the last three forms.

• Brute Force Solution: Check all possible subsets of vertices of size

k to see if they form an independent set, which takes exponential

time.
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The Independent Set Problem: Example
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The Independent Set Problem: NP Complete

• We want to show that the Independent Set Problem problem is NP

Complete

• This means showing that it is both NP and NP hard

• To show it is NP means that if a certificate is generated for the

solution we can verify it with polynomial efficiency

• To show it is NP-Hard means to show that every NP-problem can be

polynomially reduced to it

• In practice, we don’t need to show reduction for every problem

• We only need to show this for a well known NP-hard problem

• We’ll assume the clique problem is NP-hard and we show the

reduction for it
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Reduction: Clique Problem to Independent Set

• Reduction: Transform an instance of the Clique problem into an

instance of the Independent Set problem.

• Given a graph G and an integer k, the Clique problem asks if there

is a clique of size k in G .

• Construct a new graph G ′ by taking the complement of G (i.e.,

create G ′ where two vertices are adjacent in G ′ if and only if they

are not adjacent in G ).

• In the new graph G ′, an independent set of size k in G ′ corresponds

to a clique of size k in G .

• Therefore, solving the Independent Set problem on G ′ can be used

to solve the Clique problem on G .

• This reduction shows that the Independent Set problem is NP-hard

because the Clique problem is NP-hard.
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Reduction: Time Complexity of Constructing the Complement

Graph

• Constructing a new graph G ′ by taking the complement of G

involves:

• Initializing G ′ with the same set of vertices as G .
• For each pair of vertices (u, v):

• Check if there is an edge between u and v in G .

• If there is no edge in G , add an edge between u and v in G ′.

• Time Complexity Analysis:

• There are
(
n
2

)
= n(n−1)

2
pairs of vertices to check.

• Each check and potential edge addition takes O(1) time.

• Overall Time Complexity: O(n2).

• This means our reduction is a polynomial reduction
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Reduction: Clique to Independent Set

• Start with the original graph G for the Clique problem.

A B

C D

E F

G

H

Graph G (Clique problem)
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Reduction: Clique to Independent Set

• Start with the original graph G for the Clique problem.

• Create the complement graph G ′:

• Two vertices are connected in G ′ if and only if they are not

connected in G .

• An independent set in G ′ corresponds to a clique in G .

• For example, the independent set (A, B, C, D, E) in G ′ corresponds

to the clique (A, B, C, D, E) in G .

A B

C D

E F

G

H
A B

C D

E

Graph G (Clique problem)

A B

C D

E F

G

H
A B

C D

E

Graph G ′ (Independent Set problem)
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Reduction: Note

• In this particular example reduction is symmetric

• If clique <p independetset and independetset <p clique
• This is not the general case

• X <p Y ⇏ Y <p X
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Conclusion



P vs NP

• There are a number of questions that are still open in the P vs NP

domain

• P = NP ?

• Part of the millennium prize challenges

• NP = co-NP ?

• P = NP ∩ co-NP ?

• EXP: Verification takes exponential time

• PSpace - Problems that can be verified

in polynomial space given unlimited time

• BPP - Problems that can be solved with

probabilistic algorithm in polynomial time

• BQP - Solvable via quantum computing

• Others: EXSpace, 2-Exp and even

unsolvable
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Conclusion

• Understanding computational intractability and reductions helps

classify problems and develop efficient algorithms.

• The study of NP-complete problems and their relationships with

other problems is crucial in computer science.

• In practice, we use reduction to show that a problem is difficult to

solve of practical purposes (i.e., intractable)

• An entire sub-field of CS/Math, called Computational complexity

theory, is dedicated to studying these issues
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