

Network Flow

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

- 1. Introduction
- 2. Flow Networks
- 3. Ford-Fulkerson Algorithm

4. s-t Cuts and Capacities

Introduction

Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Gene function prediction.

Flow Networks

Flow Networks

- Use directed graphs to model transportation networks:
 - Edges carry traffic and have capacities.
 - Nodes act as switches.
 - Source nodes generate traffic, sink nodes absorb traffic.
- A flow network is a directed graph G = (V, E)
 - Each edge $e \in E$ has a capacity $c_e > 0$.
 - There is a single source node $s \in V$.
 - There is a single sink node $t \in V$.
 - Nodes other than *s* and *t* are internal.
- In a flow network G = (V, E), an *s*-*t* flow is a function $f : E \to \mathbb{R}^+$ such that:
 - Capacity conditions: For each $e \in E$, $0 \le f(e) \le c(e)$.
 - Conservation conditions: For each internal node v,

e

$$\sum_{\text{into v}} f(e) = \sum_{e \text{ out of v}} f(e)$$

• The value of a flow is $\nu(f) = \sum_{e \text{ out of s}} f(e)$.

Maximum-Flow Problem

- Input: A flow network G
- **Solution**: The flow with the largest value in *G*, where the maximum is taken over all possible flows on *G*.
- Output should assign a flow value to each edge in the graph.
- The flow on each edge should satisfy the capacity condition.
- The flow into and out of each internal node should satisfy the conservation conditions.
- The value of the output flow, i.e., the total flow out of the source node in the output flow, must be the largest over all possible flows on *G*.
- Assumptions:
 - 1. No edges enter *s*, no edges leave *t*.
 - 2. There is at least one edge incident on each node.
 - 3. All edge capacities are integers.

- No known dynamic programming algorithm.
- Let us take a greedy approach.
 - 1. Start with zero flow along all edges.
 - 2. Find an *s*-*t* path and push as much flow along it as possible.
 - 3. Idea to increase flow:
 - Push flow along edges with leftover capacity.
 - If needed, undo flow on edges already carrying flow.

Ford-Fulkerson Algorithm

- Given a flow network G = (V, E) and a flow f on G, the residual graph G_f of G with respect to f is a directed graph such that:
 - 1. (Nodes) G_f has the same nodes as G.
 - (Forward edges) For each edge e = (u, v) ∈ E such that f(e) < c(e), G_f contains the edge (u, v) with a residual capacity c(e) - f(e).
 - (Backward edges) For each edge e ∈ E such that f(e) > 0, G_f contains the edge e' = (v, u) with a residual capacity f(e).

- Let P be a simple s-t path in G_f .
- b = bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:
 - *e* is forward edge in $G_f \Rightarrow$ flow increases along *e* in *G*.
 - e = (u, v) is backward edge in $G_f \Rightarrow$ flow decreases along (v, u) in G.

- v(f) = 4
- Use the residual graph to find a path from s to t
- Let's say $P' = \{s, v, u, t\}$

- v(f) = 4
- Use the residual graph to find a path from s to t
- Let's say $P' = \{s, v, u, t\}$

- v(f) = 4
- Use the residual graph to find a path from s to t
- Let's say $P' = \{s, v, u, t\}$

- v(f) = 4
- Use the residual graph to find a path from s to t
- Let's say $P' = \{s, v, u, t\}$

- v(f) = 4
- Use the residual graph to find a path from s to t
- Let's say $P' = \{s, v, u, t\}$

- v(f) = 6
- We don't have a path from s to t in the residual graph
- This indicates that our max flow is 6

Algorithm 1 Ford-Fulkerson Algorithm

Require: Graph G with capacities c(u, v), source s, sink t

Ensure: Maximum flow f from s to t

- 1: initialize flow f(u, v) = 0 for all edges $(u, v) \in G$
- 2: while there is a path p from s to t in the residual graph G_f do
- 3: find residual capacity $c_f(p) = \min\{c_f(u, v) \mid (u, v) \in p\}$
- 4: for all edges (u, v) in p do
- 5: **increase** flow f(u, v) by $c_f(p)$
- 6: **decrease** flow f(v, u) by $c_f(p)$
- 7: end for
- 8: end while
- 9: **return** *f*

s-t Cuts and Capacities

- An *s*-*t* cut is a partition of *V* into sets *A* and *B* such that $s \in A$ and $t \in B$.
- Capacity of the cut (A, B) is:

$$c(A,B) = \sum_{e \text{ out of } A} c(e) = \sum_{e=(u,v), u \in A, v \in B} c(e)$$

• Intuition: For every flow f and for every s-t cut (A, B), $\nu(f) \leq c(A, B)$.

- Let \overline{f} denote the flow computed by the Ford-Fulkerson algorithm.
- Enough to show $\exists s \text{-} t \text{ cut } (A^*, B^*)$ such that $\nu(\overline{f}) = c(A^*, B^*)$.
- When the algorithm terminates, the residual graph has no s-t path.
- Claim: If f is an s-t flow such that G_f has no s-t path, then there is an s-t cut (A*, B*) such that ν(f) = c(A*, B*).

- The flow \overline{f} computed by the Ford-Fulkerson algorithm is a maximum flow.
- Given a flow of maximum value, we can compute a minimum s-t cut in O(m) time.
- In every flow network, there is a flow f and a cut (A, B) such that $\nu(f) = c(A, B)$.
- Max-Flow Min-Cut Theorem: In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.
- Corollary: If all capacities in a flow network are integers, then there is a maximum flow f where f(e), the value of the flow on edge e, is an integer for every edge e in G.