
Greedy Algorithms

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

Table of contents

1. Objective

2. Interval Scheduling

3. Interval Partitioning

4. Minimizing Lateness

5. Fractional Knapsack

6. Graph Recap

Graphs

Greedy Algorithms

7. Single Source Shortest Path

8. Minimum Spanning Tree

The Problem

Kruskal’s Algorithm

Prim’s Algorithm

9. Conclusion

1

Reminders

• Course Survey (Due tomorrow)

• Homework 1 released

2

Objective

Objective

• Start discussion of different ways of designing algorithms.

• Greedy algorithms

• Divide and conquer

• Dynamic programming

• Discuss principles that can solve a variety of problem types

• Design an algorithm, prove its correctness, analyse its complexity

• Greedy algorithms: make the current best choice.

3

Objective

• Start discussion of different ways of designing algorithms.

• Greedy algorithms

• Divide and conquer

• Dynamic programming

• Discuss principles that can solve a variety of problem types

• Design an algorithm, prove its correctness, analyse its complexity

• Greedy algorithms: make the current best choice.

3

Objective

• Start discussion of different ways of designing algorithms.

• Greedy algorithms

• Divide and conquer

• Dynamic programming

• Discuss principles that can solve a variety of problem types

• Design an algorithm, prove its correctness, analyse its complexity

• Greedy algorithms: make the current best choice.

3

Objective

• Start discussion of different ways of designing algorithms.

• Greedy algorithms

• Divide and conquer

• Dynamic programming

• Discuss principles that can solve a variety of problem types

• Design an algorithm, prove its correctness, analyse its complexity

• Greedy algorithms: make the current best choice.

3

Objective

• Start discussion of different ways of designing algorithms.

• Greedy algorithms

• Divide and conquer

• Dynamic programming

• Discuss principles that can solve a variety of problem types

• Design an algorithm, prove its correctness, analyse its complexity

• Greedy algorithms: make the current best choice.

3

Interval Scheduling

Interval Scheduling Problem

• Input: Start and end time of each workshop.

• Goal: Compute the largest number of workshops you can be on in

one day

• Constraints:
• Cannot be in two places at one time.

• Workshops may overlap. 4

Interval Scheduling Problem

Note

Notice that we don’t have a preference for workshops. We

are interested in the maximum number of workshops we can

attend.

4

Interval Scheduling Problem

• Input: Set (s(i), f (i)), 1 ≤ i ≤ n of start and finish times of n

workshops.

• Solution: The largest subset of mutually compatible workshops.

5

Interval Scheduling Problem

• Two workshops are compatible if they do not overlap.

• This problem models the situation where you have a resource, a set

of fixed jobs, and you want to schedule as many jobs as possible.

• For any input set of jobs, our algorithm must provably compute the

largest set of compatible jobs.
5

Example: Compatibility

Poll 1

• Which jobs/workshops are compatible?

• A and F : No

• B and G : Yes

• C and H : Yes

• D and E : No

• E and G : No

• F and D : No

6

Example: Compatibility

Poll 1

• Which jobs/workshops are compatible?

• A and F : No

• B and G : Yes

• C and H : Yes

• D and E : No

• E and G : No

• F and D : No
6

Interval Scheduling Problem: Brute Force Algorithm

• Generate all possible subsets of the given intervals.

• Check if the intervals in each subset are mutually compatible.

• Track the largest subset that is compatible.

• Is this algorithm efficient ? Poll 2

• There are 2n subsets and checking each subset for compatibility

takes O(n) time.

• The brute force algorithm has a time complexity of O(n · 2n), where
n is the number of intervals.

• This approach is computationally expensive for large n

7

Interval Scheduling Problem: Brute Force Algorithm

• Generate all possible subsets of the given intervals.

• Check if the intervals in each subset are mutually compatible.

• Track the largest subset that is compatible.

• Is this algorithm efficient ? Poll 2

• There are 2n subsets and checking each subset for compatibility

takes O(n) time.

• The brute force algorithm has a time complexity of O(n · 2n), where
n is the number of intervals.

• This approach is computationally expensive for large n

7

Interval Scheduling Problem: Greedy Algorithm Intuition

• Process jobs in some order.

• Add next job to the result if it is compatible with the jobs already in

the result.

• Key question: in what order should we process the jobs? Poll 3

• Earliest start time: Increasing order of start time s(i).

• Earliest finish time: Increasing order of finish time f(i).

• Shortest interval: Increasing order of length f(i) - s(i).

• Fewest conflicts: Increasing order of the number of conflicting jobs.

8

Interval Scheduling Problem: Greedy Algorithm Intuition

• Process jobs in some order.

• Add next job to the result if it is compatible with the jobs already in

the result.

• Key question: in what order should we process the jobs? Poll 3

• Earliest start time: Increasing order of start time s(i).

• Earliest finish time: Increasing order of finish time f(i).

• Shortest interval: Increasing order of length f(i) - s(i).

• Fewest conflicts: Increasing order of the number of conflicting jobs.

8

Interval Scheduling Problem: Greedy Algorithm with Earliest

Finish Time

Algorithm 1 Schedule intervals in order of earliest Finish time (EFT)

function intervalScheduling(S):

A = []

sort(S) // Sort based on finish time

while S is not empty:

// pop the workshop with the earliest finish time

workshop = S.pop()

A.push(workshop) // Add to the return list

for w in S:

if not compatibleWith(workshop, w):

S.remove(w)

return A

• Claim: A is a compatible set of jobs. Poll 4

9

Interval Scheduling Problem: Greedy Algorithm with Earliest

Finish Time

Algorithm 2 Schedule intervals in order of earliest Finish time (EFT)

function intervalScheduling(S):

A = []

sort(S) // Sort based on finish time

while S is not empty:

// pop the workshop with the earliest finish time

workshop = S.pop()

A.push(workshop) // Add to the return list

for w in S:

if not compatibleWith(workshop, w):

S.remove(w)

return A

• Claim: A is a compatible set of jobs. Poll 4

9

Earliest Finish Time Intuition for Proof of Correctness

• We need to prove that |A| (the number of jobs in A) is the largest

possible in any set of mutually compatible jobs.

• Key idea: The algorithm always makes the optimal choice by

selecting the job that finishes the earliest.

• This strategy leaves the most room for the remaining jobs,

maximizing the number of compatible jobs.

10

Earliest Finish Time : Detailed Proof of Correctness

• Let O be an optimal set of workshops. Poll 5

• We have to show that |O| == |A|
• Show elements in |O| and |A| are the same

• Let A = {a1, a2, . . . , ak} be the set of jobs selected by the algorithm,

ordered by finish time.

• Let O = {o1, o2, . . . , om} be an optimal set of jobs, ordered by finish

time, with m ≥ k.

• We use induction to show that for all 1 ≤ r ≤ k, the finish time of

ar is less than or equal to the finish time of or .

11

Earliest Finish Time : Detailed Proof of Correctness

• Let O be an optimal set of workshops. Poll 5

• We have to show that |O| == |A|
• Show elements in |O| and |A| are the same

• Let A = {a1, a2, . . . , ak} be the set of jobs selected by the algorithm,

ordered by finish time.

• Let O = {o1, o2, . . . , om} be an optimal set of jobs, ordered by finish

time, with m ≥ k.

• We use induction to show that for all 1 ≤ r ≤ k, the finish time of

ar is less than or equal to the finish time of or .

11

Earliest Finish Time : Detailed Proof of Correctness

• Let O be an optimal set of workshops. Poll 5

• We have to show that |O| == |A|
• Show elements in |O| and |A| are the same

• Let A = {a1, a2, . . . , ak} be the set of jobs selected by the algorithm,

ordered by finish time.

• Let O = {o1, o2, . . . , om} be an optimal set of jobs, ordered by finish

time, with m ≥ k .

• We use induction to show that for all 1 ≤ r ≤ k , the finish time of

ar is less than or equal to the finish time of or .

11

Proof of Correctness: Detailed

• Induction

• Initialization: r = 1. The first job a1 selected by the algorithm has

the earliest finish time, so f (a1) ≤ f (o1).
• Maintenance: Assume f (ai) ≤ f (oi) for all i ≤ r .

• Since ar+1 is chosen to have the earliest finish time after ar ,

f (ar+1) ≤ f (or+1).

• This maintains the property for ar+1.

• Now let’s show that k = m (termination)

• Since both A and O are sets of mutually compatible jobs:

• If there are more jobs in O than A, there must be some job in O

that can be replaced by a job in A without causing conflicts.

• Thus, the size of A is equal to the size of O:

• Both A and O contain the maximum number of compatible jobs.

• Therefore, the algorithm’s solution is optimal.

12

Greedy Property

Note

• The greedy property of the algorithm is the maximize the

available time after picking a job to add to the list.

• i.e., Leave maximum room for the remaining jobs/workshops

13

Interval Partitioning

Interval Partitioning Problem

• Input: Start and end time of each workshop.

• Goal: Compute the minimum number of rooms required to hold all

workshops without conflicts.

• Constraints:
• Workshop times may overlap.

• Two workshops can’t happen in the same room at the same time. 14

Interval Partitioning Problem

Note

Notice that we need to ensure that no two overlapping

workshops are scheduled in the same room.

14

Interval Partitioning Problem

• Input: Set (s(i), f (i)), 1 ≤ i ≤ n of start and finish times of n

workshops.

• Solution: The minimum number of rooms required to hold all

workshops.

15

Interval Partitioning Problem

• Two workshops need separate rooms if they overlap.

• This problem models the situation where you have a set of

workshops and you want to minimize the number of rooms required.

• For any input set of workshops, our algorithm must provably

compute the minimum number of rooms required.
15

Example: Room Assignment

Poll 6

• How many rooms are needed for the following workshops?

• A, B and D : 3 room

• B, C and D : 3 room

• A, G and H : 2 room

• C, F and H : 2 rooms

• C, E and H : 2 room

• B, E and H : 1 rooms

16

Example: Room Assignment

Poll 6

• How many rooms are needed for the following workshops?

• A, B and D : 3 room

• B, C and D : 3 room

• A, G and H : 2 room

• C, F and H : 2 rooms

• C, E and H : 2 room

• B, E and H : 1 rooms
16

Interval Partitioning Problem Greedy Algorithm: Idea

• Sort the workshops by their start times.

• Use a priority queue to manage end times of currently assigned

rooms.

• For each workshop:

• If the workshop can reuse an existing room (its start time is after the

earliest end time), assign it to that room.

• Otherwise, allocate a new room.

17

min-heap Data Structure

• A min-heap is a binary tree-based data structure where the parent

node is always less than or equal to its child nodes.

• This property ensures that the smallest element is always at the root

of the heap.

• Efficient operations:

• Retrieving the minimum element: O(1) time.

• Insertion and deletion of the minimum element: O(log n) time.

18

Interval Partitioning Problem Greedy Algorithm: Pseudocode

Algorithm 3 Assign rooms using a priority queue

function intervalPartitioning(S):

endTimes = [] // min-heap based priority queue sorted by end times

sort(S) // Sort intervals by start time

for each workshop in S:

if endTimes is not empty and endTimes[0] ≤ start(workshop):

room = endTimes.heappop(endTimes) // Reuse room

else:

room = new room(workshop) // create new room

endTimes.heappush(endTimes)

return len(endTimes)

Question: In this algorithm we are only checking for the first endTimes.

why is that ? Poll 7

19

Interval Partitioning Problem Greedy Algorithm: Pseudocode

Algorithm 4 Assign rooms using a priority queue

function intervalPartitioning(S):

endTimes = [] // min-heap based priority queue sorted by end times

sort(S) // Sort intervals by start time

for each workshop in S:

if endTimes is not empty and endTimes[0] ≤ start(workshop):

room = endTimes.heappop(endTimes) // Reuse room

else:

room = new room(workshop) // create new room

endTimes.heappush(endTimes)

return len(endTimes)

Claim: The size of the priority queue at the end of the algorithm gives

the minimum number of rooms required.

19

Interval Partitioning Algorithm: Greedy Property

Note

The greedy property of the algorithm ensures that we are

always minimizing the number of rooms used by reusing

rooms whenever possible.

20

Interval Partitioning Greedy Algorithm: Runtime Analysis

• Sorting the intervals by their start times takes O(n log n) time.

• For each interval, we perform the following operations:

• Checking the earliest end time in the priority queue (min-heap) takes

O(1) time.

• Adding a new end time to the priority queue (min-heap) takes

O(log k) time, where k is the number of rooms.

• Removing the earliest end time from the priority queue (min-heap)

takes O(log k) time, where k is the number of rooms.

• Thus, processing each interval takes O(log k) time.

• Total runtime

• Sorting the intervals: O(n log n)

• Processing each interval: O(n log k)

• In the worst case, k = n (all intervals need separate rooms), so the

processing time is O(n log n).

• Therefore, the total runtime of the algorithm is

O(n log n) + O(n log n) = O(n log n).

21

Minimizing Lateness

Scheduling to Minimise Lateness

• Job i has a length t(i) and a deadline d(i).

• We want to schedule all n jobs on one resource.

• Our goal is to assign a starting time s(i) to each job such that each

job is delayed as little as possible.

• A job i is late if f (i) > d(i)

• Notice f (i) is not a given, it depends on how we decide to schedule a

job

• The lateness of the job is

max(0, f (i)− d(i))

• The lateness of a schedule is max

max
1≤i≤n

(max(0, f (i)− d(i)))

• Note that the lateness is defined with a max not a sum

22

Scheduling to Minimise Lateness: Example

• Example 1:
i 1 2

ti 3 2

di 1 3

• Which of the following is better Poll 8

Time

d2 = 3 d1 = 1

0 1 2 3 4 5 6

Time

d1 = 1 d2 = 3

0 1 2 3 4 5 6

23

Scheduling to Minimise Lateness: Example

• Example 1:
i 1 2

ti 3 2

di 1 3

• Which of the following is better Poll 8

Time

d2 = 3 d1 = 1 lateness = ?

0 1 2 3 4 5 6

Time

d1 = 1 d2 = 3 lateness = ?

0 1 2 3 4 5 6

23

Scheduling to Minimise Lateness: Example

• Example 1:
i 1 2

ti 3 2

di 1 3

• Which of the following is better Poll 8

Time

d2 = 3 d1 = 1 lateness = 4

0 1 2 3 4 5 6

Time

d1 = 1 d2 = 3 lateness = 2

0 1 2 3 4 5 6

23

Scheduling to Minimise Lateness: Example

1 2 3 4 5 6 job number

tj 3 2 1 4 3 2 time required

dj 6 8 9 9 14 15 deadline

• What’s the delay for the following scheduling? Poll 9

Time

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24

Scheduling to Minimise Lateness: Example

1 2 3 4 5 6 job number

tj 3 2 1 4 3 2 time required

dj 6 8 9 9 14 15 deadline

• What’s the delay for the following scheduling? Poll 9

Time

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lateness = 2 lateness = 0 lateness = 6

24

Scheduling to Minimise Lateness: Example

1 2 3 4 5 6 job number

tj 3 2 1 4 3 2 time required

dj 6 8 9 9 14 15 deadline

• What’s the delay for the following scheduling? Poll 9

Time

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lateness = 2 lateness = 0 lateness = 6

24

Scheduling to Minimise Lateness: Problem

• Input: Set (t(i), d(i)), 1 ≤ i ≤ n of length and deadline of n tasks.

• Solution: Set (s(i), 1 ≤ i ≤ n of start times such that

max1≤i≤n(max(0, s(i) + t(i)− d(i))) is as small as possible

25

Minimizing Lateness: Brute Force Approach

• Generate all possible permutations of jobs.

• Calculate the maximum lateness for each permutation.

• Choose the permutation with the smallest maximum lateness.

26

Minimizing Lateness: Brute Force Algorithm

Algorithm 5 Minimize Lateness using Brute Force

function bruteForceMinimizeLateness(jobs):

n = len(jobs)

bestSchedule = None

minLateness = ∞
foreach permutation in permutations(jobs):

currentTime, maxLateness = 0

for job in permutation:

currentTime += duration(job)

lateness = max(0, currentTime - deadline(job))

maxLateness = max(maxLateness, lateness)

if maxLateness < minLateness:

minLateness = maxLateness

bestSchedule = permutation

return bestSchedule

27

Minimizing Lateness: Brute Force Algorithm Time Complexity

• Generating Permutations:

• There are n! (factorial) permutations of n jobs.

• Evaluating Each Permutation:

• For each permutation, compute the maximum lateness by iterating

over n jobs.

• Each evaluation takes O(n) time.

• Overall Time Complexity:

• Generating permutations: O(n!)

• Evaluating each permutation: O(n)

• Combined time complexity: O(n · n!)

• The brute force algorithm is computationally expensive and

impractical for large input sizes due to the factorial growth rate.

28

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Scheduling to Minimise Lateness: Sort the jobs

• Key question: In what order should we schedule the jobs? Poll 10

• Shortest length Increasing order of length t(i).

• Shortest job may have a very late deadline.

i 1 2

t(i) 1 10

d(i) 100 10

• Shortest slack time Increasing order of d(i)− t(i).

• Job with smallest slack may take a long time.

i 1 2

t(i) 1 10

d(i) 2 10

• Earliest deadline Increasing order of deadline d(i).

• Does it make sense to tackle jobs with earliest deadlines first? Poll 11

29

Minimizing Lateness: Earliest Deadline First

Algorithm 6 Minimize Lateness using Earliest Deadline First (EDF)

function minimizeLateness(jobs):

A = []

sort(jobs) // Sort jobs based on deadline

currentTime = 0

lateness = 0

for job in jobs:

A.append(job)

currentTime += job.duration

if lateness ¡ currentTime - job.duration:

lateness = currentTime - job.duration

return A, lateness

30

Proof of correctness

• We can use loop invariant

• Once sorted, executing the tasks in order requires O(n) time.

• Therefore, the overall runtime of the EDF algorithm is dominated by

the sorting step, making it O(n log n).

31

Runtime Analysis

• Sorting the tasks by their deadlines takes O(n log n) time.

• Once sorted, executing the tasks in order requires O(n) time.

• Therefore, the overall runtime of the EDF algorithm is dominated by

the sorting step, making it O(n log n).

32

Fractional Knapsack

Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

• Input: Knapsack capacity, items with their quantities and values.

• Goal: Maximize value without exceeding capacity.

• Constraints:

• Items can be taken in fractions to obtain proportional value.

33

https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Question

Which of these items should I take to maximize value?

33

https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Fractional Knapsack Problem

• Input: List (w(i), v(i)), 1 ≤ i ≤ n, andC where C is the size of our

knapsack, w(i) is the size of item i and v(i) is its value

• Output: The maximum value we can get without exceeding C

34

Fractional Knapsack: Greedy Property

• What should consider to be the greedy property

• When deciding to take an item or not Poll 12

• Take the item with the smallest size
• Take the item with the maximum value

• What if the item with the maximum value is more than the remaining

space in our knapsack?

• How to sort the items Poll 13

• By size

• By value

• By value per unit of size

35

Fractional Knapsack: Greedy Property

• What should consider to be the greedy property

• When deciding to take an item or not Poll 12

• Take the item with the smallest size
• Take the item with the maximum value

• What if the item with the maximum value is more than the remaining

space in our knapsack?

• How to sort the items Poll 13

• By size

• By value

• By value per unit of size

35

Fractional Knapsack: Greedy Property

• What should consider to be the greedy property

• When deciding to take an item or not Poll 12

• Take the item with the smallest size
• Take the item with the maximum value

• What if the item with the maximum value is more than the remaining

space in our knapsack?

• How to sort the items Poll 13

• By size

• By value

• By value per unit of size

35

Fractional Knapsack: Greedy Property

• What should consider to be the greedy property

• When deciding to take an item or not Poll 12

• Take the item with the smallest size
• Take the item with the maximum value

• What if the item with the maximum value is more than the remaining

space in our knapsack?

• How to sort the items Poll 13

• By size

• By value

• By value per unit of size

35

Fractional Knapsack Algorithm: Pseudocode

Algorithm 7 Fractional Knapsack

Require: Items with weights wi and values vi , knapsack capacity W

Ensure: Maximum total value in the knapsack

1: Calculate the value-to-weight ratio ri =
vi
wi

for each item i

2: Sort items by ri in descending order

3: Initialize total value V ← 0

4: Initialize remaining capacity C ←W

5: for each item i in sorted order do

6: if wi ≤ C then

7: Take the whole item i

8: C ← C − wi

9: V ← V + vi
10: else

11: Take fraction C
wi

of item i

12: V ← V + vi × C
wi

13: Break the loop

14: end if

15: end for

16: return V

36

Fractional Knapsack: Proof of Correctness

• Loop Invariant: At the start of each iteration i of the loop, the

total value V and the remaining capacity C represent an optimal

solution for the subset of items considered so far.

• Initialization:

• Before the first iteration, no items have been considered.

• Total value V is initialized to 0.

• Remaining capacity C is initialized to the knapsack capacity W .

• The loop invariant holds trivially since no items have been added yet.

37

Fractional Knapsack: Proof of Correctness

• Maintenance:
• Assume the loop invariant holds before the i th iteration.

• Consider item i with weight wi and value vi .

• If wi ≤ C , the entire item is added to the knapsack.

• The value vi is added to V , and wi is subtracted from C .

• If wi > C , a fraction C
wi

of the item is added.

• The value vi × C
wi

is added to V , and C becomes 0.

• In both cases, the updated V and C represent an optimal solution

for the considered items.

• The loop invariant is maintained.

• Termination:
• The loop terminates when all items have been considered or the

knapsack is full.

• At this point, the total value V and the remaining capacity C

represent an optimal solution.

• The loop invariant guarantees that the solution is optimal.

• Therefore, the fractional knapsack algorithm correctly computes the

maximum value.
38

Fractional Knapsack: Time Complexity Analysis

• The time complexity of the fractional knapsack algorithm is

determined by the sorting step and the loop.

• Sorting:

• The items are sorted by their value-to-weight ratio ri in descending

order.

• This step takes O(n log n) time, where n is the number of items.

• Loop:

• The loop iterates over each item, processing it in constant time O(1).

• Therefore, the loop takes O(n) time.

• Overall Time Complexity:

• The total time complexity of the algorithm is dominated by the

sorting step.

• Thus, the overall time complexity is O(n log n).

39

Graph Recap

Definitions - Graphs

• Graph: A collection of nodes vertices (V) and edges (E) connecting

pairs of nodes.

• Directed vs Undirected

• Directed Graph: Edges have a direction, represented as ordered

pairs (u, v) indicating the path from vertex u to vertex v .

• Undirected Graph: Edges do not have a direction, represented as

unordered pairs {u, v}, allowing movement between vertices u and v

in both directions.

• Subgraph: A graph formed from a subset of the vertices and edges

of another graph.

• Degree of a Vertex: The number of edges incident to the vertex.

For a directed graph, there are in-degree and out-degree.

40

Definitions - Types of Graphs

• Weighted Graph: A graph where each edge (u, v) has a numerical

value (weight) w(u, v) associated with it.

• Multi Graph: A graph that can have multiple edges (parallel edges)

between two vertices u and v .

• Complete Graph: A graph where every pair of distinct vertices u

and v is connected by a unique edge.

• Bipartite Graph: A graph whose vertices can be divided into two

disjoint and independent sets U and V such that every edge

connects a vertex in U to one in V .

41

Definitions - Paths

• Path: A sequence of edges connecting a sequence of vertices.

• Simple Path: A path that does not repeat any vertices.

• Weight of Path: The sum of the weights of the edges in a path.

For a path P = {v1, v2, . . . , vk}, the weight

w(P) =
∑k−1

i=1 w(vi , vi+1).

• Shortest Path: The path between two vertices that has the

smallest total weight or length.

• Distance: The length or weight of the shortest path between two

vertices u and v , denoted as d(u, v).

• Connected Graph: A graph in which there is a path between every

pair of vertices.

42

Definitions - Trees

• Cycle: A path that starts and ends at the same vertex without

repeating any edges or vertices (except the starting/ending vertex).

• Tree: A connected acyclic graph.

• Spanning Tree: A subset of the edges of a graph that forms a tree

and connects all vertices of the graph.

• A tree connecting all the vertices in a graph.

• Minimum Spanning Tree: A spanning tree with the minimum

total weight of edges.

43

Greedy Algorithm

• A greedy algorithm is an algorithmic paradigm that builds up a

solution piece by piece

• It always chooses the next piece that offers the most immediate

benefit

• Properties of Greedy Algorithms:

• Greedy Choice Property:

• A global optimum can be arrived at by selecting a local optimum.

• This means making a choice that looks best at the moment.

• Optimal Substructure:

• A problem exhibits optimal substructure if an optimal solution to the

problem contains optimal solutions to the subproblems.

44

Single Source Shortest Path

Shortest Path: The problem

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Find the shortest path from a single source vertex to another vertex

in a graph.

45

Shortest Path: The problem

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2
H F

• Find the shortest path from a single source vertex to another vertex

in a graph.

• E.g., Starting from H what is the shortest path to F

45

Shortest Path: The problem

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2
H

• Find the shortest path from a single source vertex to another vertex

in a graph.

• E.g., Starting from H what is the shortest path to F

• Find the shortest path from a single source vertex to all other

vertices in a graph.

45

Shortest Path: The Problem

• Real-World Examples:

• Finding the quickest route between two locations using a GPS.

• Optimizing data packet routing in a computer network.

• Planning the shortest path for a delivery route.

• Properties:

• Non-Negative Weights: Many shortest path algorithms assume

non-negative edge weights.

• Optimal Substructure: Shortest paths exhibit optimal substructure,

meaning the shortest path between two vertices contains within it

the shortest path between intermediate vertices.

46

Shortest Path: Brute Force Approaches

• Exhaustive Search:
• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:
• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:
• Paths from A to D: Poll 1

• A → D: Weight = ?

• A → C → D: Weight = ?

• A → B → C → D: Weight = ?

• A → B → D: Weight = ? A B

C D

2

2 1 3

4

7

A

D
47

Shortest Path: Brute Force Approaches

• Exhaustive Search:

• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:

• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:

• Paths from A to D:

• A → D: Weight = 7 A B

C D

2

2 1 3

4

7

A

D

A

D

47

Shortest Path: Brute Force Approaches

• Exhaustive Search:

• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:

• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:

• Paths from A to D:

• A → D: Weight = 7

• A → C → D: Weight = 6 A B

C D

2

2 1 3

4

7

A

D

A

C D

47

Shortest Path: Brute Force Approaches

• Exhaustive Search:

• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:

• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:

• Paths from A to D:

• A → D: Weight = 7

• A → C → D: Weight = 6

• A → B → C → D: Weight = 7

A B

C D

2

2 1 3

4

7

A

D

A B

C D

47

Shortest Path: Brute Force Approaches

• Exhaustive Search:

• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:

• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:

• Paths from A to D:

• A → D: Weight = 7

• A → C → D: Weight = 6

• A → B → C → D: Weight = 7

• A → B → D: Weight = 5

A B

C D

2

2 1 3

4

7

A

D

A B

D

47

Shortest Path: Brute Force Approaches

• Exhaustive Search:

• Generate all simple paths between two vertices.

• Calculate the path weight for each path.

• Pick the one with the lowest weight (shortest path).

• Time Complexity:

• Brute force methods have exponential time complexity, typically

O(n!) for a graph with n vertices.

• This makes brute force methods impractical for large graphs.

• Consider a simple graph:

• Paths from A to D:

• A → D: Weight = 7

• A → C → D: Weight = 6

• A → B → C → D: Weight = 7

• A → B → D: Weight = 5

• Shortest path is A → B → D with weight 5.

A B

C D

2

2 1 3

4

7

A

D

A B

D

47

General Structure of Shortest Path Algorithms

• Initialization:

• Set the initial distances from the source to all vertices as infinity,

except for the source itself, which is set to 0.

• Initialize the predecessor (or parent) for each vertex as undefined.

• Relaxation:

• For each edge (u, v), if the distance to v through u is shorter than

the current known distance to v , update the distance to v .

• Repeat this process iteratively, ensuring that the shortest known

distances are updated.

• This step ensures that the shortest path estimates improve

progressively.

• Finalization:

• Once all vertices are processed, the shortest path from the source to

each vertex is determined.

• The final distances represent the shortest paths from the source to

all other vertices.

48

Dijkstra Algorithm: Intuition

• At each step choose the edge (u, v) with the lowest weight

• This happens on the relaxation step

• This is a greedy choice as it is only making decision based on the

currently observable distance

• By always choosing the vertex with the smallest known distance,

Dijkstra’s algorithm efficiently finds the shortest path.

• Only works for graphs with non-negative weights.

49

Dijkstra Algorithm: Pseudo-code

Algorithm 8 Dijkstra’s Algorithm

1: Input: Graph G = (V ,E), source vertex s

2: Output: Shortest paths from s to all other vertices

3: Initialize distances d [v]←∞ for all v ∈ V except d [s]← 0

4: Initialize an empty priority queue Q

5: Insert s into Q with priority 0

6: while Q is not empty do

7: Extract vertex u with the smallest distance d [u] from Q

8: for each neighbor v of u do

9: if d [u] + w(u, v) < d [v] then

10: d [v]← d [u] + w(u, v)

11: Insert v into Q with priority d [v]

12: end if

13: end for

14: end while

50

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

V Distance Parent

A

B

C

D

E

F

G

H

51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• Start with the source vertex and set the distance to 0

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

A V Distance Parent

A 0 -

B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Visited = [] Unvisited = [A, B, C, D, E, F, G, H]

51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA B

C

3
0 + 3

4

0
+

4

V Distance Parent

A 0 -

B 3 A

C 4 A

D ∞
E ∞
F ∞
G ∞
H ∞

Visited = [] Unvisited = [A, B, C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA V Distance Parent

A 0 -

B 3 A

C 4 A

D ∞
E ∞
F ∞
G ∞
H ∞

Visited = [A] Unvisited = [B, C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA B V Distance Parent

A 0 -

B 3 A

C 4 A

D ∞
E ∞
F ∞
G ∞
H ∞

Visited = [A] Unvisited = [B, C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA B

C D

1

3 + 1

3

3
+

3

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E ∞
F ∞
G ∞
H ∞

Visited = [A] Unvisited = [B, C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E ∞
F ∞
G ∞
H ∞

Visited = [A , B] Unvisited = [C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

C

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E ∞
F ∞
G ∞
H ∞

Visited = [A , B] Unvisited = [C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CH

E

2

4
+

2

2

4 + 2

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F ∞
G ∞
H 6 C

Visited = [A , B] Unvisited = [C, D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F ∞
G ∞
H 6 C

Visited = [A , B , C] Unvisited = [D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC D

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F ∞
G ∞
H 6 C

Visited = [A , B , C] Unvisited = [D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC D

E

F
1

6 + 1

5 6 + 5

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G ∞
H 6 C

Visited = [A , B , C] Unvisited = [D, E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

Poll 2

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G ∞
H 6 C

Visited = [A , B , C , D] Unvisited = [E, F, G, H] 51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

E

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G ∞
H 6 C

Visited = [A , B , C , D] Unvisited = [E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

E G

H

4

6 + 4

7
6
+
7

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 10 E

H 6 C

Visited = [A , B , C , D] Unvisited = [E, F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 10 E

H 6 C

Visited = [A , B , C , D , E] Unvisited = [F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

H

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 10 E

H 6 C

Visited = [A , B , C , D , E] Unvisited = [F, G, H]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 10 E

H 6 C

Visited = [A , B , C , D , E , H] Unvisited = [F, G,]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH F

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 10 E

H 6 C

Visited = [A , B , C , D , E , H] Unvisited = [F, G,]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH F

G

1
7
+
1

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 8 F

H 6 C

Visited = [A , B , C , D , E , H] Unvisited = [F, G,]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH FF

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 8 F

H 6 C

Visited = [A , B , C , D , E , H , F] Unvisited = [G,]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH FF

G

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 8 F

H 6 C

Visited = [A , B , C , D , E , H , F] Unvisited = [G,]
51

Dijkstra Algorithm: Example

• Visit the unvisited vertex with he smallest known distance from the

start vertex.

• For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

1

2

AA BB

CC DD

EE

HH FF

GG

V Distance Parent

A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 8 F

H 6 C

Visited = [A , B , C , D , E , H , F , G] Unvisited = []
51

Dijkstra Algorithm: Proof of Correctness

• Assume that Dijkstra’s algorithm does not always produce the

shortest path.

• Let u be the first vertex for which the algorithm finds an incorrect

shortest path.

• Assume the true shortest path to u is through a vertex v , but the

algorithm incorrectly determines a different path.

• Since u is the first vertex with an incorrect path, d [v] must be

correct when u is processed.

• When u is selected for processing, all vertices with shorter paths

(including v) should have already been processed.

• However, since v was not processed before u, d [v] must be greater

than d [u], contradicting the assumption that the path through v is

shorter.

• Hence, the assumption that Dijkstra’s algorithm does not always

produce the shortest path is false.

• Therefore, Dijkstra’s algorithm correctly finds the shortest path.
52

Dijkstra Algorithm: Proof of Correctness

u

53

Dijkstra Algorithm: Proof of Correctness

u

v

53

Dijkstra Algorithm: Time Complexity

• Dijkstra’s algorithm uses a priority queue for efficient distance

updates.

• The main operations are:

• Insertion into the priority queue.

• Extracting the minimum element from the priority queue.

• Decreasing the key value in the priority queue.

• Insertion and decrease-key operations take O(logV) time.

• Extract-min operation takes O(logV) time.

• Total time complexity with a binary heap is O((V + E) logV).

• For a complete graph, where E = O(V 2):

• With a binary heap, the time complexity is O(V 2 logV).

54

Dijkstra’s Algorithm: Real-World Applications

• Used to find the shortest path between two locations, providing

efficient routing for vehicles and pedestrians.

• Used in protocols like OSPF (Open Shortest Path First) to determine

the most efficient path for data packets to travel across a network.

• Helps in planning and managing traffic flow by identifying the

shortest routes and reducing congestion.

• Applied in optimizing delivery routes for logistics companies to

ensure timely and cost-effective deliveries.

• Used in AI pathfinding to navigate characters or objects through

complex environments in video games.

55

Shortest Path Problem: Extensions

• Multi-Source Shortest Paths:

• Floyd-Warshall Algorithm: Solves for all pairs shortest paths in

O(V 3) time.

• Negative Weights:

• Bellman-Ford Algorithm: Handles negative weights, runs in O(VE)

time.

• Negative Weight Cycles:

• Detects negative weight cycles, which can lead to undefined shortest

paths.

56

Minimum Spanning Tree

MST: The Problem

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Find the subset of edges that connects all the vertices with the

minimum total weight.
• E.g., Given a weighted graph, find the minimum spanning tree that

connects all nodes.

• The resulting tree should have the minimum possible total edge

weight.

57

MST: Applications

• Network Design:

• Used to design efficient networks (computer, telecommunication,

etc.) with minimal wiring/cabling costs.

• Urban Planning:

• Helps in designing road networks to connect cities with minimum

total road length.

• Clustering Analysis:

• Applied in hierarchical clustering methods to determine clusters in

data.

• Circuit Design:

• Used to minimize the total length of wires in circuit design.

58

Spanning Tree: Properties

• Given a graph G = (V ,E)

• A spanning tree of the graph will be a graph with |V | vertices and
|V | − 1 edges

• The number of possible spanning trees is |E |C(|V | − 1)− |C |, where
C is the number of cycles in the graph

A B

C D

E

F

G

H Example Spanning Trees

59

Spanning Tree: Properties

• Given a graph G = (V ,E)

• A spanning tree of the graph will be a graph with |V | vertices and
|V | − 1 edges

• The number of possible spanning trees is |E |C(|V | − 1)− |C |, where
C is the number of cycles in the graph

A B

C D

E

F

G

H

Example Spanning Trees

• (A, B), (B, C), (C, H), (C, E),

(E, D), (E, G), (G, F)

59

Spanning Tree: Properties

• Given a graph G = (V ,E)

• A spanning tree of the graph will be a graph with |V | vertices and
|V | − 1 edges

• The number of possible spanning trees is |E |C(|V | − 1)− |C |, where
C is the number of cycles in the graph

A B

C D

E

F

G

H

Example Spanning Trees

• (A, B), (B, C), (C, H), (C, E),

(E, D), (E, G), (G, F)

• (A, C), (C, B), (B, D), (C, E),

(E, H), (E, G), (D, F)

59

MST: Example

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Example: Consider the given graph and following spanning trees.

60

MST: Example

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Example: Consider the given graph and following spanning trees.

• (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)
Poll 3

60

MST: Example

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Example: Consider the given graph and following spanning trees.

• (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)

• Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21

60

MST: Example

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Example: Consider the given graph and following spanning trees.

• (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)

• Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21

• What is the Weight of the MST: Poll 4

60

MST: Example

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Example: Consider the given graph and following spanning trees.

• (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)

• Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21

• What is the Weight of the MST: 16

60

Kruskal’s Algorithm: Idea

• Greedy Choice Property:

• At each step, the algorithm makes a locally optimal choice by

selecting the smallest weight edge available.

• This greedy choice leads to a globally optimal solution for the MST.

• Optimal Substructure:

• Any subset of edges that forms an MST for a subgraph of the

original graph is part of the MST for the entire graph.

• This property allows the algorithm to build the MST incrementally.

• Kruskal’s Algorithm constructs the MST by adding edges in

increasing order of weight.

• At each step, the edge added does not form a cycle with the

previously added edges.

• Uses a Disjoint Set data structure (Union-Find) to efficiently

manage the connected components.

61

Union-Find Data Structure

• A data structure that keeps track of a set of elements partitioned

into disjoint (non-overlapping) subsets.

• Provides efficient operations to manage and merge these subsets.

• Key Operations:

• Find: Determine the subset (or set representative) of an element.

• Union: Merge two subsets into a single subset.

• Before adding an edge, use the Find operation to check if the two

vertices are in the same subset.

• If they are in the same subset, adding the edge would form a cycle.

• If they are in different subsets, use the Union operation to merge the

subsets, safely adding the edge without forming a cycle.

62

Kruskal’s Algorithm: Pseudo-code

Algorithm 9 Kruskal’s Algorithm

1: Input: Graph G = (V ,E)

2: Output: Minimum Spanning Tree T

3: Sort edges E by weight

4: Initialize T = ∅
5: for each edge (u, v) in E (in increasing order of weight) do

6: if adding (u, v) to T does not form a cycle then

7: Add (u, v) to T

8: end if

9: end for

10: return T

63

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2 • Edges added to MST:

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2 • Edges added to MST:

• (B, C) = 1

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2
• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2
• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

• (B, D) = 3

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

• (B, D) = 3

• (A, B) = 3

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

• (B, D) = 3

• (A, B) = 3

• (E, G) = 4

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

• (B, D) = 3

• (A, B) = 3

• (E, G) = 4

64

Kruskal’s Algorithm: Example

• Start with an empty MST.

• Add the smallest edge that does not form a cycle.

• Continue until the MST contains |V | − 1 edges.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

• Edges added to MST:

• (B, C) = 1

• (D, F) = 1

• (C, E) = 2

• (C, H) = 2

• (B, D) = 3

• (A, B) = 3

• (E, G) = 4

• MST: (B, C), (D, F), (C, E), (C, H), (B, D) ,(A, B), (E, G)

• Weight = 1 + 1 + 2 + 2 + 3 + 3 + 4 = 16

64

Kruskal’s Algorithm: Correctness

• Assume that Kruskal’s Algorithm does not produce a Minimum

Spanning Tree (MST).

• Let T be the MST produced by Kruskal’s Algorithm, and let T ∗ be

the true MST.

• Assume that the total weight of T is greater than the total weight

of T ∗.

• Edge Addition:

• Kruskal’s Algorithm adds edges in increasing order of weight.

• During the construction, if an edge e is added to T but not to T ∗,

replacing any edge in T ∗ with e would result in a spanning tree with

equal or lesser weight.

65

Kruskal’s Algorithm: Correctness

• Cycle Formation:

• The Union-Find data structure ensures that adding e does not form

a cycle.

• Therefore, every edge added maintains the acyclic property of T .

• Contradiction:

• Since T and T ∗ are both spanning trees and T is constructed by

adding edges in increasing order of weight, it cannot have a greater

total weight than T ∗.

• Hence, the assumption that Kruskal’s Algorithm does not produce an

MST is false.

66

Kruskal’s Algorithm: Time Complexity

• Sorting the edges takes O(E log E) time.

• Each Union and Find operation takes O(logV) time.

• Overall time complexity is O(E log E + E logV), which simplifies to

O(E logV) for connected graphs.

67

Prim’s Algorithm: Idea

• Greedy Choice Property:
• At each step, the algorithm makes a locally optimal choice by

selecting the smallest weight edge that connects a vertex in the MST

to a vertex outside the MST.

• This greedy choice ensures that the MST grows incrementally by

always adding the minimum possible edge.

• Optimal Substructure:
• Any subset of edges that forms an MST for a subgraph of the

original graph is part of the MST for the entire graph.

• This property allows the algorithm to build the MST incrementally,

ensuring optimality at each step.

• Prim’s Algorithm constructs the MST by starting from an arbitrary

vertex and growing the MST one edge at a time.

• At each step, the algorithm selects the smallest weight edge that

connects a vertex in the MST to a vertex outside the MST.

• Uses a priority queue (often implemented with a binary heap or

Fibonacci heap) to efficiently select the next edge to add.
68

Prim’s Algorithm: Pseudocode

Algorithm 10 Prim’s Algorithm

1: Input: Graph G = (V ,E), starting vertex s

2: Output: Minimum Spanning Tree T

3: Initialize distances d [v]←∞ for all v ∈ V except d [s]← 0

4: Initialize an empty priority queue Q

5: Insert s into Q with priority 0

6: while Q is not empty do

7: Extract vertex u with the smallest distance d [u] from Q

8: for each neighbor v of u do

9: if v is not in the MST and w(u, v) < d [v] then

10: d [v]← w(u, v)

11: Insert v into Q with priority d [v]

12: end if

13: end for

14: end while

69

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2 • Edges added to MST:

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C
• Edges added to MST:

• (B, C) = 1

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C
• Edges added to MST:

• (B, C) = 1

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

D

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

• (B, D) = 3

• MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)

• Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

D

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

• (B, D) = 3

• MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)

• Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

D F

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

• (B, D) = 3

• (D, F) = 1

• MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)

• Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

D F

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

• (B, D) = 3

• (D, F) = 1

• MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)

• Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

70

Prim’s Algorithm: Example

• Start with an arbitrary vertex.

• Add the smallest edge that connects a vertex in the MST to a vertex

outside the MST.

• Continue until all vertices are included in the MST.

A B

C D

E

F

G

H

3

4 1 3

57 2

1

4

8

2

B

C

E

H

A

D F

G

• Edges added to MST:

• (B, C) = 1

• (C, E) = 2

• (C, H) = 2

• (A, B) = 3

• (B, D) = 3

• (D, F) = 1

• (E, G) = 4

• MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)

• Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

70

Prim’s Algorithm: Correctness

• Assume that Prim’s Algorithm does not produce a Minimum

Spanning Tree (MST).

• Let T be the MST produced by Prim’s Algorithm, and let T ∗ be the

true MST.

• Assume that the total weight of T is greater than the total weight

of T ∗.

• Edge Addition:

• Prim’s Algorithm adds edges in increasing order of their weight,

starting from an arbitrary vertex.

• At each step, it selects the smallest edge that connects a vertex in T

to a vertex outside T .

• If an edge e is added to T but not to T ∗, replacing any edge in T ∗

with e would result in a spanning tree with equal or lesser weight.

71

Prim’s Algorithm: Correctness

• Cycle Avoidance:

• Prim’s Algorithm ensures that each added edge connects a vertex

inside the MST to one outside, maintaining the acyclic property of T .

• Since T starts with a single vertex and grows by adding one edge at

a time, no cycles can form.

• Contradiction:

• Since T and T ∗ are both spanning trees and T is constructed by

adding edges in increasing order of weight, it cannot have a greater

total weight than T ∗.

• Hence, the assumption that Prim’s Algorithm does not produce an

MST is false.

• Conclusion:

• Prim’s Algorithm correctly produces an MST.

72

Prim’s Algorithm: Time Complexity

• Using a binary heap, the time complexity is O((V + E) logV).

• Using a Fibonacci heap, the time complexity is O(E + V logV).

• For dense graphs, the time complexity is dominated by the number

of edges.

73

Comparison of Kruskal’s and Prim’s Algorithms

• Kruskal’s Algorithm:

• Constructs the MST by adding edges in increasing order of weight.

• At each step, the edge added does not form a cycle with the

previously added edges.

• Uses a Disjoint Set data structure (Union-Find) to manage

connected components.

• Suitable for sparse graphs.

• Time Complexity: O(E log E) (or O(E logV) if implemented with

efficient union-find operations).

74

Comparison of Kruskal’s and Prim’s Algorithms

• Prim’s Algorithm:

• Constructs the MST by starting from an arbitrary vertex and growing

the MST one edge at a time.

• At each step, selects the smallest weight edge that connects a vertex

in the MST to a vertex outside the MST.

• Uses a priority queue (binary heap or Fibonacci heap) for efficient

edge selection.

• Suitable for dense graphs.

• Time Complexity: O((V + E) logV) with a binary heap,

O(E + V logV) with a Fibonacci heap.

75

Comparison of Kruskal’s and Prim’s Algorithms

• Similarities:

• Both algorithms use a greedy approach to construct the MST.

• Both algorithms ensure the MST has the minimum total weight.

• Both algorithms maintain the properties of acyclic and connectivity.

• Differences:

• Approach:

• Kruskal’s: Edge-based, adds edges in increasing weight.

• Prim’s: Vertex-based, grows MST from a starting vertex.

• Data Structures:

• Kruskal’s: Uses Union-Find for cycle detection.

• Prim’s: Uses a priority queue for selecting the next edge.

• Efficiency:

• Kruskal’s: More efficient for sparse graphs.

• Prim’s: More efficient for dense graphs.

76

Conclusion

Greedy Algorithms: Summary

• A greedy algorithm is an algorithmic paradigm that builds up a

solution piece by piece.

• Greedy algorithms are best suited for problems where:

• The problem exhibits the greedy choice property.

• The problem has optimal substructure.

• A clear local optimum can be identified that leads to a global

optimum.

• Example problems include finding the minimum spanning tree,

shortest paths in graphs, and constructing optimal codes.

77

Today’s Session: Summary

• We discussed scheduling problems

• Interval Scheduling

• Interval Partitioning

• Minimizing Lateness

• Fractional knapsack

• We presented greedy algorithms to the problems

• We showed these algorithms result in correct output

• We showed the greedy properties of each

• We showed the running time of these algorithms

78

Today’s Session:Summary

• Greedy algorithms for graph

• Single Source shortest path with Dijkstra Algorithm
• Minimum Spanning Tree

• Kruskal’s algorithm

• Prim’s algorithms

• Example applications of these problems/algorithms

79

Resource

• Shortest Path Problem

• General Idea: https://www.youtube.com/watch?v=Aa2sqUhIn-E
• Dijkstra’s Algorithm:

• https://www.youtube.com/watch?v=pVfj6mxhdMw

• https://www.youtube.com/watch?v=2E7MmKv0Y24

• https://www.youtube.com/watch?v=HXhJIDB6EcM

• MST:

• https://www.youtube.com/watch?v=Yldkh0aOEcg

• https://www.youtube.com/watch?v=tKwnms5iRBU

80

	Objective
	Interval Scheduling
	Interval Partitioning
	Minimizing Lateness
	Fractional Knapsack
	Graph Recap
	Graphs
	Greedy Algorithms

	Single Source Shortest Path
	Minimum Spanning Tree
	The Problem
	Kruskal's Algorithm
	Prim's Algorithm

	Conclusion

