

Greedy Algorithms

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

Table of contents

- 1. Objective
- 2. Interval Scheduling
- 3. Interval Partitioning
- 4. Minimizing Lateness
- 5. Fractional Knapsack
- 6. Graph Recap

Graphs

Greedy Algorithms

- 7. Single Source Shortest Path
- 8. Minimum Spanning Tree

The Problem

Kruskal's Algorithm

Prim's Algorithm

9. Conclusion

- Course Survey (Due tomorrow)
- Homework 1 released

Objective

• Start discussion of different ways of designing algorithms.

- Start discussion of different ways of designing algorithms.
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming

- Start discussion of different ways of designing algorithms.
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
- Discuss principles that can solve a variety of problem types

- Start discussion of different ways of designing algorithms.
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
- Discuss principles that can solve a variety of problem types
- Design an algorithm, prove its correctness, analyse its complexity

- Start discussion of different ways of designing algorithms.
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
- Discuss principles that can solve a variety of problem types
- Design an algorithm, prove its correctness, analyse its complexity
- Greedy algorithms: make the current best choice.

Interval Scheduling

Room	A	В	c	D	E	F	G	н
Paral.#1 11:00- 12:30 Monday 16 Sept.	Block 1A. Pedagogic methods: Studio teaching (4-1)	Block 1B. Digital technology in landscape education (2-1)	Block 1C. Curricula: Assessment and programme development	Block 1D. Teaching transdisciplinary approaches to landscape [4-1]	Block 1E. History of landscape education (3-1)	Block 1F. The ELC and landscape education	Block 1G. Pedagogic methods: Multisensory	Block 1H. [Special session] Landscape architecture education in a global research context
ParaL#2 13:30- 15:00 Monday 16 Sept.	Block 2A. Pedagogic methods: Studio teaching (4-2)	Block 28. Pedagogic methods: sustainability, ecology and planting design	Block 2C. Pedagogic methods: Understanding site	Block 2D. Teaching transdisciplinary approaches to landscape (4-2)	Block 2E. History of landscape education (3-2)	Block 2F. [Special session] UNISCAPE meeting: Landscape education after 20 years of the ELC	Block 2G. [Workshop] Stonesensing: Evoking meaning with stones	Block 2H. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learnin and practice contexts (2-1)
Paral.#3 15:30- 17:00 Monday 16 Sept.	Block 3A. Pedagogic methods: Studio teaching (4-3)	Block 38. [Special session] The history and future of teaching digital methods in landscape architecture	Block 3C. The making of a profession	Block 3D. Teaching transdisciplinary approaches to landscape (4-3)	Block 3E. History of landscape education (3-3)	Block 3F. [Special session] Challenges and opportunities of landscape architecture education in the Arab world: The experience of the American University of Beint	Block 3G. [Workshop] Learning to read the landscape: a methodological framework	Biock 31. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learnin and practice contexts (2-2)
Paral.84 10:30- 12:00 Tuesday 17 Sept.	Block 4A. Pedagogic methods: Studio teaching (4-4)	Block 48. Pedagogic methods: Student engagement and motivation	Block 4C. Pedagogic methods: Fieldwork	Block 4D. Landscape education: Ethics and values	Block 4E. Pedagogic methods: Teaching in a global context	Block 4F. [Special session] Bridging national and disciplinary boundaries: Concepts of sustainability in landscape and urban planning education	Block 4G. [Special session] Professional mythologies or academic consistency? Reframing the basic concepts in landscape architecture education	Block 4H. [Workshop] An asset to education: Introducing archives of landscape architecture in academic education
ParaL#5 14:00- 15:30 Tuesday	Block SA. Pedagogic methods: Design thinking	Block 58. Digital technology in landscape education (2-2)	Block SC. Educating in a multicultural context	Block SD. Teaching transdisciplinary approaches to loodcape (4, 4)	Block SE. Pedagogic methods: Integrating	Block SF. Visions for landscape education	Block 5G. [Workshop] The power of imagined	

- Input: Start and end time of each workshop.
- Goal: Compute the largest number of workshops you can be on in one day
- Constraints:
 - Cannot be in two places at one time.
 - Workshops may overlap.

Boom	A	В	c	D	E	F	G	н
Paral.#1 11:00- 12:30 Monday 16 Sept.	Block 1A. Pedagogic methods: Studio teaching (4-1)	Block 1B. Digital technology in landscape education (2-1)	Block 1C. Curricula: Assessment and programme development	Block 1D. Teaching transdisciplinary approaches to landscape (4-1)	Block 1E. History of landscape education (3-1)	Block 1F. The ELC and landscape education	Block 1G. Pedagogic methods: Multisensory	Block 1H. [Special session] Landscape architecture education in a global research context
Paral.#2 13:30- 15:00 Monday 16 Sept.	Block 2A. Pedagogic methods: Studio teaching (4-2)	Block 28. Pedagogic methods: sustainability, ecology and planting design	Block 2C. Pedagogic methods: Understanding site	Block 2D. Teaching transdisciplinary approaches to landscape (4-2)	Block 2E. History of landscape education (3-2)	Block 2F. [Special session] UNISCAPE meeting: Landscape education after 20 years of the ELC	Block 2G. [Workshop] Stonesensing: Evoking meaning with stones	Block 2H. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learning and practice context [2-1]
Paral #3 15:30- 17:00 Monday 16 Sept.	Block 3A. Pedagogic methods: Studio teaching (4-3)	Block 38. [Special session] The history and future of teaching digital methods in landscape architecture	Block 3C. The making of a profession	Block 3D. Teaching transdisciplinary approaches to landscape (4-3)	Block 3E. History of landscape education (3-3)	Block 3F. [Special session] Challenges and opportunities of landscape architecture education in the Arab world: The experience of the American University of Beint	Block 3G. [Workshop] Learning to read the landscape: a methodological framework	Block 3P.1 Block 3P.1 [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learning and practice contexts (2-2)
Paral.84 10:30- 12:00 Tuesday 17 Sept.	Block 4A. Pedagogic methods: Studio teaching (4-4)	Block 48. Pedagogic methods: Student engagement and motivation	Block 4C. Pedagogic methods: Fieldwork	Block 4D. Landscape education: Ethics and values	Block 4E. Pedagogic methods: Teaching in a global context	Block 4F. [Special session] Bridging national and disciplinary boundaries: Concepts of sustainability in landscape and urban planning education	Block 4G. [Special session] Professional mythologies or academic consistency? Reframing the basic concepts in landscape architecture education	Block 4H. [Workshop] An asset to education: Introducing architecture in academic education
ParaL#5 14:00- 15:30 Tuesday 17 Sect	Block 5A. Pedagogic methods: Design thinking	Block 5B. Digital technology in landscape education (2-2)	Block SC. Educating in a multicultural context	Block 5D. Teaching transdisciplinary approaches to landscane (4.4)	Block SE. Pedagogic methods: Integrating theory	Block SF. Visions for landscape education	Block 5G. [Workshop] The power of imagined landscanes	

Note

Notice that we don't have a preference for workshops. We are interested in the maximum **number** of workshops we can attend.

- Input: Set (s(i), f(i)), 1 ≤ i ≤ n of start and finish times of n workshops.
- Solution: The largest subset of mutually compatible workshops.

- Two workshops are *compatible* if they do not overlap.
- This problem models the situation where you have a resource, a set of fixed jobs, and you want to schedule as many jobs as possible.
- For any input set of jobs, our algorithm must provably compute the **largest** set of compatible jobs.

Example: Compatibility

Example: Compatibility

- Which jobs/workshops are compatible?
 - $\bullet~$ A and F : No
 - $\bullet~$ B and G : Yes
 - $\bullet~$ C and H : Yes

- D and E : **No**
- $\bullet~$ E and G : No
- $\bullet~$ F and D : No

- Generate all possible subsets of the given intervals.
- Check if the intervals in each subset are mutually compatible.
- Track the largest subset that is compatible.
- Is this algorithm efficient ? Poll 2

- Generate all possible subsets of the given intervals.
- Check if the intervals in each subset are mutually compatible.
- Track the largest subset that is compatible.
- Is this algorithm efficient ? Poll 2
 - There are 2ⁿ subsets and checking each subset for compatibility takes O(n) time.
 - The brute force algorithm has a time complexity of $O(n \cdot 2^n)$, where *n* is the number of intervals.
 - This approach is computationally expensive for large *n*

- Process jobs in some order.
- Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs? Poll3

- Process jobs in some order.
- Add next job to the result if it is compatible with the jobs already in the result.
- Key question: in what order should we process the jobs? Poll3
 - Earliest start time: Increasing order of start time s(i).
 - Earliest finish time: Increasing order of finish time f(i).
 - Shortest interval: Increasing order of length f(i) s(i).
 - Fewest conflicts: Increasing order of the number of conflicting jobs.

Interval Scheduling Problem: Greedy Algorithm with Earliest Finish Time

 $\label{eq:algorithm1} \textbf{Algorithm1} \textbf{Schedule intervals in order of earliest Finish time (EFT)}$

```
function intervalScheduling(S):
A = []
sort(S) // Sort based on finish time
while S is not empty:
  // pop the workshop with the earliest finish time
  workshop = S.pop()
  A.push(workshop) // Add to the return list
  for w in S:
    if not compatibleWith(workshop, w):
       S.remove(w)
return A
```

Interval Scheduling Problem: Greedy Algorithm with Earliest Finish Time

```
Algorithm 2 Schedule intervals in order of earliest Finish time (EFT)
function intervalScheduling(S):
  A = []
  sort(S) // Sort based on finish time
  while S is not empty:
    // pop the workshop with the earliest finish time
    workshop = S.pop()
    A.push(workshop) // Add to the return list
    for w in S:
       if not compatibleWith(workshop, w):
         S.remove(w)
  return A
```

- We need to prove that |A| (the number of jobs in A) is the largest possible in any set of mutually compatible jobs.
- Key idea: The algorithm always makes the optimal choice by selecting the job that finishes the earliest.
- This strategy leaves the most room for the remaining jobs, maximizing the number of compatible jobs.

• Let *O* be an optimal set of workshops. Poll 5

- Let O be an optimal set of workshops. Poll 5
 - We have to show that |O| == |A|
 - Show elements in |O| and |A| are the same
- Let $A = \{a_1, a_2, \dots, a_k\}$ be the set of jobs selected by the algorithm, ordered by finish time.

- Let O be an optimal set of workshops. Poll 5
 - We have to show that |O| == |A|
 - Show elements in |O| and |A| are the same
- Let $A = \{a_1, a_2, \dots, a_k\}$ be the set of jobs selected by the algorithm, ordered by finish time.
- Let O = {o₁, o₂, ..., o_m} be an optimal set of jobs, ordered by finish time, with m ≥ k.
- We use induction to show that for all 1 ≤ r ≤ k, the finish time of a_r is less than or equal to the finish time of o_r.

- Induction
 - Initialization: r = 1. The first job a₁ selected by the algorithm has the earliest finish time, so f(a₁) ≤ f(o₁).
 - Maintenance: Assume $f(a_i) \leq f(o_i)$ for all $i \leq r$.
 - Since a_{r+1} is chosen to have the earliest finish time after a_r, f(a_{r+1}) ≤ f(o_{r+1}).
 - This maintains the property for a_{r+1} .
- Now let's show that k = m (termination)
- Since both A and O are sets of mutually compatible jobs:
 - If there are more jobs in *O* than *A*, there must be some job in *O* that can be replaced by a job in *A* without causing conflicts.
- Thus, the size of A is equal to the size of O:
 - Both A and O contain the maximum number of compatible jobs.
 - Therefore, the algorithm's solution is optimal.

Note

- The greedy property of the algorithm is the maximize the available time after picking a job to add to the list.
 - i.e., Leave maximum room for the remaining jobs/workshops

Interval Partitioning

Room	A	В	c	D	E	F	G	н
Paral.#1 11:00- 12:30 Monday 16 Sept.	Block 1A. Pedagogic methods: Studio teaching (4-1)	Block 1B. Digital technology in landscape education (2-1)	Block 1C. Curricula: Assessment and programme development	Block 1D. Teaching transdisciplinary approaches to landscape [4-1]	Block 1E. History of landscape education (3-1)	Block 1F. The ELC and landscape education	Block 1G. Pedagogic methods: Multisensory	Block 1H. [Special session] Landscape architecture education in a global research context
ParaL#2 13:30- 15:00 Monday 16 Sept.	Block 2A. Pedagogic methods: Studio teaching (4-2)	Block 28. Pedagogic methods: sustainability, ecology and planting design	Block 2C. Pedagogic methods: Understanding site	Block 2D. Teaching transdisciplinary approaches to landscape (4-2)	Block 2E. History of landscape education (3-2)	Block 2F. [Special session] UNISCAPE meeting: Landscape education after 20 years of the ELC	Block 2G. [Workshop] Stonesensing: Evoking meaning with stones	Block 2H. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learning and practice rooteast (2-1)
ParaL#3 15:30- 17:00 Monday 16 Sept.	Block 3A. Pedagogic methods: Studio teaching (4-3)	Block 38. [Special session] The history and future of teaching digital methods in landscape architecture	Block 3C. The making of a profession	Block 3D. Teaching transdisciplinary approaches to landscape (4-3)	Block 3E. History of landscape education (3-3)	Block 3F. [Special session] Challenges and opportunities of landscape architecture education in the Arab world: The experience of the American University of Beiruf	Block 3G. [Workshop] Learning to read the landscape: a methodological framework	Block 3H. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learning and practice contexts (2-2)
Paral.84 10:30- 12:00 Tuesday 17 Sept.	Block 4A. Pedagogic methods: Studio teaching (4-4)	Block 48. Pedagogic methods: Student engagement and motivation	Block 4C. Pedagogic methods: Fieldwork	Block 4D. Landscape education: Ethics and values	Block 4E. Pedagogic methods: Teaching in a global context	Block 4F. [Special session] Bridging national and disciplinary boundaries: Concepts of sustainability in landscape and urban planning education	Block 4G. [Special session] Professional mythologies or academic consistency? Reframing the basic concepts in landscape architecture education	Block 4H. [Workshop] An asset to education: Introducing architecture in academic education
ParaL#5 14:00- 15:30 Tuesday	Block 5A. Pedagogic methods: Design thinking	Block 5B. Digital technology in landscape education (2-2)	Block SC. Educating in a multicultural context	Block SD. Teaching transdisciplinary approaches to loadersoon (4.4)	Block SE. Pedagogic methods: Integrating	Block SF. Visions for landscape education	Block 5G. [Workshop] The power of imagined	

- Input: Start and end time of each workshop.
- **Goal:** Compute the minimum number of rooms required to hold all workshops without conflicts.
- Constraints:
 - Workshop times may overlap.
 - Two workshops can't happen in the same room at the same time.

Room	A	8	c	D	E	F	G	н
Paral.#1 11:00- 12:30 Monday 16 Sept.	Block 1A. Pedagogic methods: Studio teaching (4-1)	Block 18. Digital technology in landscape education (2-1)	Block 1C. Curricula: Assessment and programme development	Block 1D. Teaching transdisciplinary approaches to landscape [4-1]	Block 1E. History of landscape education (3-1)	Block 1F. The ELC and landscape education	Block 1G. Pedagogic methods: Multisensory	Block 1H. [Special session] Landscape architecture education in a global research context
ParaL#2 13:30- 15:00 Monday 16 Sept.	Block 2A. Pedagogic methods: Studio teaching (4-2)	Block 28. Pedagogic methods: sustainability. ecology and planting design	Block 2C. Pedagogic methods: Understanding site	Block 2D. Teaching transdisciplinary approaches to landscape (4-2)	Block 2E. History of landscape education (3-2)	Block 2F. [Special session] UNISCAPE meeting: Landscape education after 20 years of the ELC	Block 2G. [Workshop] Stonesensing: Evoking meaning with stones	Block 2H. [Workshop] New practices of collaboration: Exploring landscape architectural teaching, learning and practice context (2,1)
Paral.#3 15:30- 17:00 Monday 16 Sept.	Block 3A. Pedagogic methods: studio teaching (4-3)	Block 3B. [Special session] The history and future of teaching digital methods in landscape architecture	Block 3C. The making of a profession	Block 3D. Teaching transdisciplinary approaches to landscape (4-3)	Block 3E. History of landscape education (3-3)	Block 3F. [Special session] Challenges and opportunities of landscape architecture education in the Arab world: The experience of the American University of Beirut	Block 3G. [Workshop] Learning to read the landscape: a methodological framework	Block 3H. [Workshop] New practices of collaboration: Exploring Iandscape architectural teaching, learning and practice contexts (2-2)
Paral.84 10:30- 12:00 Tuesday 17 Sept.	Block 4A. Pedagogic methods: Studio teaching (4-4)	Block 48. Pedagogic methods: Student engagement and motivation	Block 4C. Pedagogic methods: Fieldwork	Block 4D. Landscape education: Ethics and values	Block 4E. Pedagogic methods: Teaching in a global context	Block 4F. [Special session] Bridging national and disciplinary boundaries: Concepts of sustainability in landscape and urban planning education	Block 4G. [Special session] Professional mythologies or academic consistency? Reframing the basic concepts in landscape architecture education	Block 4H. [Workshop] An asset to education: Introducing archives of landscape architecture in academic education
Paral.#5 14:00- 15:30 Tuesday 17 Sept.	Block 5A. Pedagogic methods: Design thinking	Block 58. Digital technology in landscape education (2-2)	Block SC. Educating in a multicultural context	Block 5D. Teaching transdisciplinary approaches to landscape (4-4)	Block SE. Pedagogic methods: Integrating theory	Block SF. Visions for landscape education	Block 5G. [Workshop] The power of imagined landscapes	

Note

Notice that we need to ensure that no two overlapping workshops are scheduled in the same room.

- Input: Set (s(i), f(i)), 1 ≤ i ≤ n of start and finish times of n workshops.
- **Solution**: The minimum number of rooms required to hold all workshops.

- Two workshops need separate rooms if they overlap.
- This problem models the situation where you have a set of workshops and you want to minimize the number of rooms required.
- For any input set of workshops, our algorithm must provably compute the minimum number of rooms required.

Example: Room Assignment

Example: Room Assignment

How many rooms are needed for the following workshops?

- A, B and D : 3 room
- B, C and D : 3 room
- A, G and H : 2 room

- C, F and H : 2 rooms
- C, E and H : 2 room
- B, E and H : 1 rooms

- Sort the workshops by their start times.
- Use a priority queue to manage end times of currently assigned rooms.
- For each workshop:
 - If the workshop can reuse an existing room (its start time is after the earliest end time), assign it to that room.
 - Otherwise, allocate a new room.
- A **min-heap** is a binary tree-based data structure where the parent node is always less than or equal to its child nodes.
- This property ensures that the smallest element is always at the root of the heap.
- Efficient operations:
 - Retrieving the minimum element: O(1) time.
 - Insertion and deletion of the minimum element: $O(\log n)$ time.

Algorithm 3 Assign rooms using a priority queue

```
function intervalPartitioning(S):
```

endTimes = [] // min-heap based priority queue sorted by end times sort(S) // Sort intervals by start time for each workshop in S:

if endTimes is not empty and endTimes[0] \leq start(workshop):

```
room = endTimes.heappop(endTimes) // Reuse room
```

else:

```
room = new room(workshop) // create new room
```

endTimes.heappush(endTimes)

return len(endTimes)

Question: In this algorithm we are only checking for the first endTimes. why is that ? Poll?

Algorithm 4 Assign rooms using a priority queue

function intervalPartitioning(S):

endTimes = [] // min-heap based priority queue sorted by end times sort(S) // Sort intervals by start time **for** each workshop **in** S:

if endTimes is not empty and endTimes[0] ≤ start(workshop):
 room = endTimes.heappop(endTimes) // Reuse room

else:

```
room = new room(workshop) // create new room
```

endTimes.heappush(endTimes)

return len(endTimes)

Claim: The size of the priority queue at the end of the algorithm gives the minimum number of rooms required.

Note

The greedy property of the algorithm ensures that we are always minimizing the number of rooms used by reusing rooms whenever possible.

Interval Partitioning Greedy Algorithm: Runtime Analysis

- Sorting the intervals by their start times takes $O(n \log n)$ time.
 - For each interval, we perform the following operations:
 - Checking the earliest end time in the priority queue (min-heap) takes O(1) time.
 - Adding a new end time to the priority queue (min-heap) takes
 O(log k) time, where k is the number of rooms.
 - Removing the earliest end time from the priority queue (min-heap) takes O(log k) time, where k is the number of rooms.
 - Thus, processing each interval takes $O(\log k)$ time.

Total runtime

- Sorting the intervals: $O(n \log n)$
- Processing each interval: $O(n \log k)$
- In the worst case, k = n (all intervals need separate rooms), so the processing time is O(n log n).
- Therefore, the total runtime of the algorithm is $O(n \log n) + O(n \log n) = O(n \log n)$.

Minimizing Lateness

Scheduling to Minimise Lateness

- Job i has a length t(i) and a deadline d(i).
- We want to schedule all n jobs on one resource.
- Our goal is to assign a starting time s(i) to each job such that each job is delayed as little as possible.
- A job *i* is late if f(i) > d(i)
 - Notice f(i) is not a given, it depends on how we decide to schedule a job
- The lateness of the job is

$$\max(0, f(i) - d(i))$$

• The lateness of a schedule is max

$$\max_{1 \le i \le n} (\max(0, f(i) - d(i)))$$

• Note that the lateness is defined with a max not a sum

• Example 1:

i	1	2
ti	3	2
di	1	3

• Example 1:

i	1	2
ti	3	2
di	1	3

• Which of the following is better Poll 8

• Example 1:

i	1	2
ti	3	2
di	1	3

• Which of the following is better Poll 8

	1	2	3	4	5	6	← job number
t _j	3	2	1	4	3	2	← time required
d_j	6	8	9	9	14	15	\longleftarrow deadline

What's the delay for the following scheduling? Poll 9

• What's the delay for the following scheduling? Poll9 |ateness = 0|lateness = 2lateness = 6 $d_3 = 9$ $d_2 = 8$ $d_6 = 15$ $d_1 = 6$ $d_5 = 14$ $d_4 = 9$ Time ġ

- Input: Set $(t(i), d(i)), 1 \le i \le n$ of length and deadline of n tasks.
- Solution: Set (s(i), 1 ≤ i ≤ n of start times such that max_{1≤i≤n}(max(0, s(i) + t(i) − d(i))) is as small as possible

- Generate all possible permutations of jobs.
- Calculate the maximum lateness for each permutation.
- Choose the permutation with the smallest maximum lateness.

Minimizing Lateness: Brute Force Algorithm

```
Algorithm 5 Minimize Lateness using Brute Force
function bruteForceMinimizeLateness(jobs):
  n = len(jobs)
  bestSchedule = None
  minLateness = \infty
foreach permutation in permutations(jobs):
  currentTime. maxLateness = 0
  for job in permutation:
    currentTime += duration(job)
    lateness = max(0, currentTime - deadline(job))
    maxLateness = max(maxLateness, lateness)
  if maxLateness < minLateness:
    minLateness = maxLateness
    bestSchedule = permutation
return bestSchedule
```

- Generating Permutations:
 - There are *n*! (factorial) permutations of *n* jobs.
- Evaluating Each Permutation:
 - For each permutation, compute the maximum lateness by iterating over *n* jobs.
 - Each evaluation takes O(n) time.
- Overall Time Complexity:
 - Generating permutations: O(n!)
 - Evaluating each permutation: O(n)
 - Combined time complexity: $O(n \cdot n!)$
- The brute force algorithm is computationally expensive and impractical for large input sizes due to the factorial growth rate.

• Key question: In what order should we schedule the jobs? Poll 10

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).
 - Shortest job may have a very late deadline.

i	1	2
t(i)	1	10
d(i)	100	10

Scheduling to Minimise Lateness: Sort the jobs

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).
 - Shortest job may have a very late deadline.

i	1	2
t(i)	1	10
d(i)	100	10

• Shortest slack time Increasing order of d(i) - t(i).

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).
 - Shortest job may have a very late deadline.

i	1	2
t(i)	1	10
d(i)	100	10

- Shortest slack time Increasing order of d(i) t(i).
 - Job with smallest slack may take a long time.

i	1	2
t(i)	1	10
d(i)	2	10

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).
 - Shortest job may have a very late deadline.

i	1	2
t(i)	1	10
d(i)	100	10

- Shortest slack time Increasing order of d(i) t(i).
 - Job with smallest slack may take a long time.

i	1	2
t(i)	1	10
d(i)	2	10

• Earliest deadline Increasing order of deadline d(i).

- Key question: In what order should we schedule the jobs? Poll 10
 - Shortest length Increasing order of length t(i).
 - Shortest job may have a very late deadline.

i	1	2
t(i)	1	10
d(i)	100	10

- Shortest slack time Increasing order of d(i) t(i).
 - Job with smallest slack may take a long time.

i	1	2
t(i)	1	10
d(i)	2	10

- Earliest deadline Increasing order of deadline d(i).
 - Does it make sense to tackle jobs with earliest deadlines first? Poll 11

Algorithm 6 Minimize Lateness using Earliest Deadline First (EDF)

```
function minimizeLateness(jobs):
A = []
sort(jobs) // Sort jobs based on deadline
currentTime = 0
lateness = 0
for job in jobs:
  A.append(job)
  currentTime += job.duration
  if lateness ; currentTime - job.duration:
     lateness = currentTime - job.duration
return A, lateness
```

- We can use loop invariant
- Once sorted, executing the tasks in order requires O(n) time.
- Therefore, the overall runtime of the EDF algorithm is dominated by the sorting step, making it $O(n \log n)$.

- Sorting the tasks by their deadlines takes $O(n \log n)$ time.
- Once sorted, executing the tasks in order requires O(n) time.
- Therefore, the overall runtime of the EDF algorithm is dominated by the sorting step, making it $O(n \log n)$.

Fractional Knapsack

Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

- Input: Knapsack capacity, items with their quantities and values.
- Goal: Maximize value without exceeding capacity.
- Constraints:
 - Items can be taken in fractions to obtain proportional value.

Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Fractional Knapsack Problem

- Input: List (w(i), v(i)), 1 ≤ i ≤ n, and C where C is the size of our knapsack, w(i) is the size of item i and v(i) is its value
- **Output**: The maximum value we can get without exceeding C

- What should consider to be the greedy property
- When deciding to take an item or not Poll 12

- What should consider to be the greedy property
- When deciding to take an item or not Poll 12
 - Take the item with the smallest size
 - Take the item with the maximum value
 - What if the item with the maximum value is more than the remaining space in our knapsack?

- What should consider to be the greedy property
- When deciding to take an item or not Poll 12
 - Take the item with the smallest size
 - Take the item with the maximum value
 - What if the item with the maximum value is more than the remaining space in our knapsack?
- How to sort the items Poll 13

- What should consider to be the greedy property
- When deciding to take an item or not Poll 12
 - Take the item with the smallest size
 - Take the item with the maximum value
 - What if the item with the maximum value is more than the remaining space in our knapsack?
- How to sort the items Poll 13
 - By size
 - By value
 - By value per unit of size

Algorithm 7 Fractional Knapsack

Require: Items with weights w_i and values v_i , knapsack capacity W

Ensure: Maximum total value in the knapsack

- 1: Calculate the value-to-weight ratio $r_i = \frac{v_i}{w_i}$ for each item *i*
- 2: Sort items by r_i in descending order
- 3: Initialize total value $V \leftarrow 0$
- 4: Initialize remaining capacity $C \leftarrow W$
- 5: for each item *i* in sorted order do
- 6: **if** $w_i \leq C$ **then**
- 7: Take the whole item *i*

8:
$$C \leftarrow C - w_i$$

9:
$$V \leftarrow V + v_i$$

10: **else**

11: Take fraction
$$\frac{C}{W}$$
 of item *i*

12:
$$V \leftarrow V + v_i \times \frac{C}{w_i}$$

13: Break the loop

14: end if
- **Loop Invariant**: At the start of each iteration *i* of the loop, the total value *V* and the remaining capacity *C* represent an optimal solution for the subset of items considered so far.
- Initialization:
 - Before the first iteration, no items have been considered.
 - Total value V is initialized to 0.
 - Remaining capacity C is initialized to the knapsack capacity W.
 - The loop invariant holds trivially since no items have been added yet.

Fractional Knapsack: Proof of Correctness

• Maintenance:

- Assume the loop invariant holds before the *i*th iteration.
- Consider item *i* with weight w_i and value v_i.
- If $w_i \leq C$, the entire item is added to the knapsack.
- The value v_i is added to V, and w_i is subtracted from C.
- If $w_i > C$, a fraction $\frac{C}{w_i}$ of the item is added.
- The value $v_i \times \frac{C}{w_i}$ is added to V, and C becomes 0.
- In both cases, the updated V and C represent an optimal solution for the considered items.
- The loop invariant is maintained.

• Termination:

- The loop terminates when all items have been considered or the knapsack is full.
- At this point, the total value V and the remaining capacity C represent an optimal solution.
- The loop invariant guarantees that the solution is optimal.
- Therefore, the fractional knapsack algorithm correctly computes the maximum value.

Fractional Knapsack: Time Complexity Analysis

- The time complexity of the fractional knapsack algorithm is determined by the sorting step and the loop.
- Sorting:
 - The items are sorted by their value-to-weight ratio r_i in descending order.
 - This step takes $O(n \log n)$ time, where n is the number of items.
- Loop:
 - The loop iterates over each item, processing it in constant time O(1).
 - Therefore, the loop takes O(n) time.
- Overall Time Complexity:
 - The total time complexity of the algorithm is dominated by the sorting step.
 - Thus, the overall time complexity is $O(n \log n)$.

Graph Recap

- **Graph**: A collection of nodes vertices (*V*) and edges (*E*) connecting pairs of nodes.
- Directed vs Undirected
 - **Directed Graph**: Edges have a direction, represented as ordered pairs (*u*, *v*) indicating the path from vertex *u* to vertex *v*.
 - Undirected Graph: Edges do not have a direction, represented as unordered pairs {*u*, *v*}, allowing movement between vertices *u* and *v* in both directions.
- **Subgraph**: A graph formed from a subset of the vertices and edges of another graph.
- **Degree of a Vertex**: The number of edges incident to the vertex. For a directed graph, there are **in-degree** and **out-degree**.

- Weighted Graph: A graph where each edge (u, v) has a numerical value (weight) w(u, v) associated with it.
- **Multi Graph**: A graph that can have multiple edges (parallel edges) between two vertices *u* and *v*.
- **Complete Graph**: A graph where every pair of distinct vertices *u* and *v* is connected by a unique edge.
- **Bipartite Graph**: A graph whose vertices can be divided into two disjoint and independent sets *U* and *V* such that every edge connects a vertex in *U* to one in *V*.

- Path: A sequence of edges connecting a sequence of vertices.
- Simple Path: A path that does not repeat any vertices.
- Weight of Path: The sum of the weights of the edges in a path.
 For a path P = {v₁, v₂,..., v_k}, the weight w(P) = ∑^{k-1}_{i=1} w(v_i, v_{i+1}).
- **Shortest Path**: The path between two vertices that has the smallest total weight or length.
- **Distance**: The length or weight of the shortest path between two vertices *u* and *v*, denoted as *d*(*u*, *v*).
- **Connected Graph**: A graph in which there is a path between every pair of vertices.

- Cycle: A path that starts and ends at the same vertex without repeating any edges or vertices (except the starting/ending vertex).
- Tree: A connected acyclic graph.
- **Spanning Tree**: A subset of the edges of a graph that forms a tree and connects all vertices of the graph.
 - A tree connecting all the vertices in a graph.
- Minimum Spanning Tree: A spanning tree with the minimum total weight of edges.

- A greedy algorithm is an algorithmic paradigm that builds up a solution piece by piece
- It always chooses the next piece that offers the most immediate benefit
- Properties of Greedy Algorithms:
 - Greedy Choice Property:
 - A global optimum can be arrived at by selecting a local optimum.
 - This means making a choice that looks best at the moment.
 - Optimal Substructure:
 - A problem exhibits optimal substructure if an optimal solution to the problem contains optimal solutions to the subproblems.

Single Source Shortest Path

Shortest Path: The problem

• Find the shortest path from a single source vertex to another vertex in a graph.

Shortest Path: The problem

- Find the shortest path from a single source vertex to another vertex in a graph.
 - E.g., Starting from H what is the shortest path to F

Shortest Path: The problem

- Find the shortest path from a single source vertex to another vertex in a graph.
 - E.g., Starting from H what is the shortest path to F
 - Find the shortest path from a single source vertex to all other vertices in a graph.

• Real-World Examples:

- Finding the quickest route between two locations using a GPS.
- Optimizing data packet routing in a computer network.
- Planning the shortest path for a delivery route.
- Properties:
 - Non-Negative Weights: Many shortest path algorithms assume non-negative edge weights.
 - **Optimal Substructure**: Shortest paths exhibit optimal substructure, meaning the shortest path between two vertices contains within it the shortest path between intermediate vertices.

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).
- Time Complexity:
 - Brute force methods have exponential time complexity, typically O(n!) for a graph with *n* vertices.
 - This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D: Poll 1
 - A \rightarrow D: Weight = ?
 - $A \rightarrow C \rightarrow D$: Weight = ?
 - $A \rightarrow B \rightarrow C \rightarrow D$: Weight = ?
 - $A \rightarrow B \rightarrow D$: Weight = ?

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).
- Time Complexity:
 - Brute force methods have exponential time complexity, typically O(n!) for a graph with n vertices.
 - This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D:
 - $A \rightarrow D$: Weight = 7

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).
- Time Complexity:
 - Brute force methods have exponential time complexity, typically O(n!) for a graph with n vertices.
 - This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D:
 - A \rightarrow D: Weight = 7
 - $A \rightarrow C \rightarrow D$: Weight = 6

• Exhaustive Search:

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).

• Time Complexity:

- Brute force methods have exponential time complexity, typically O(n!) for a graph with *n* vertices.
- This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D:
 - $A \rightarrow D$: Weight = 7
 - $A \rightarrow C \rightarrow D$: Weight = 6
 - $A \rightarrow B \rightarrow C \rightarrow D$: Weight = 7

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).
- Time Complexity:
 - Brute force methods have exponential time complexity, typically O(n!) for a graph with *n* vertices.
 - This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D:
 - $A \rightarrow D$: Weight = 7
 - $A \rightarrow C \rightarrow D$: Weight = 6
 - $A \rightarrow B \rightarrow C \rightarrow D$: Weight = 7
 - $A \rightarrow B \rightarrow D$: Weight = 5

- Generate all simple paths between two vertices.
- Calculate the path weight for each path.
- Pick the one with the lowest weight (shortest path).
- Time Complexity:
 - Brute force methods have exponential time complexity, typically O(n!) for a graph with *n* vertices.
 - This makes brute force methods impractical for large graphs.
- Consider a simple graph:
 - Paths from A to D:
 - $A \rightarrow D$: Weight = 7
 - $A \rightarrow C \rightarrow D$: Weight = 6
 - $A \rightarrow B \rightarrow C \rightarrow D$: Weight = 7
 - $A \rightarrow B \rightarrow D$: Weight = 5
 - Shortest path is A \rightarrow B \rightarrow D with weight 5.

General Structure of Shortest Path Algorithms

• Initialization:

- Set the initial distances from the source to all vertices as infinity, except for the source itself, which is set to 0.
- Initialize the predecessor (or parent) for each vertex as undefined.

• Relaxation:

- For each edge (*u*, *v*), if the distance to *v* through *u* is shorter than the current known distance to *v*, update the distance to *v*.
- Repeat this process iteratively, ensuring that the shortest known distances are updated.
- This step ensures that the shortest path estimates improve progressively.

• Finalization:

- Once all vertices are processed, the shortest path from the source to each vertex is determined.
- The final distances represent the shortest paths from the source to all other vertices.

- At each step choose the edge (u, v) with the lowest weight
- This happens on the relaxation step
- This is a greedy choice as it is only making decision based on the currently observable distance
- By always choosing the vertex with the smallest known distance, Dijkstra's algorithm efficiently finds the shortest path.
- Only works for graphs with non-negative weights.

Algorithm 8 Dijkstra's Algorithm

- 1: Input: Graph G = (V, E), source vertex s
- 2: Output: Shortest paths from s to all other vertices
- 3: Initialize distances $d[v] \leftarrow \infty$ for all $v \in V$ except $d[s] \leftarrow 0$
- 4: Initialize an empty priority queue Q
- 5: Insert s into Q with priority 0
- 6: while Q is not empty do
- 7: Extract vertex u with the smallest distance d[u] from Q
- 8: **for** each neighbor v of u **do**

9: **if**
$$d[u] + w(u, v) < d[v]$$
 then

- 10: $d[v] \leftarrow d[u] + w(u, v)$
- 11: Insert v into Q with priority d[v]
- 12: end if
- 13: end for

14: end while

• Visit the unvisited vertex with he smallest known distance from the start vertex.

V	Distance	Parent
А		
В		
С		
D		
Е		
F		
G		
Н		

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - Start with the source vertex and set the distance to 0

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Parent

Α

Α

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = [\ \mathsf{A} \qquad] \ \mathsf{Unvisited} = [\ \mathsf{B}, \ \mathsf{C}, \ \mathsf{D}, \ \mathsf{E}, \ \mathsf{F}, \ \mathsf{G}, \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = [\ \mathsf{A} \qquad] \ \mathsf{Unvisited} = [\ \mathsf{B}, \ \mathsf{C}, \ \mathsf{D}, \ \mathsf{E}, \ \mathsf{F}, \ \mathsf{G}, \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A] Unvisited = [B, C, D, E, F, G, H]

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = \left[\begin{array}{ccc} \mathsf{A} \ , \ \mathsf{B} \end{array} \right] \ \mathsf{Unvisited} = \left[\begin{array}{ccc} \mathsf{C}, \ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \end{array} \right]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = \left[\begin{array}{ccc} \mathsf{A} \ , \ \mathsf{B} \end{array} \right] \ \mathsf{Unvisited} = \left[\begin{array}{ccc} \mathsf{C}, \ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \end{array} \right]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = \left[\begin{array}{ccc} \mathsf{A} \ , \ \mathsf{B} \end{array} \right] \ \mathsf{Unvisited} = \left[\begin{array}{ccc} \mathsf{C}, \ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \end{array} \right]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} \mathsf{Visited} = [\ \mathsf{A} \ , \ \mathsf{B} \ , \ \mathsf{C} \qquad] \ \mathsf{Unvisited} = [\ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} \mathsf{Visited} = [\ \mathsf{A} \ , \ \mathsf{B} \ , \ \mathsf{C} \qquad] \ \mathsf{Unvisited} = [\ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} \mathsf{Visited} = [\ \mathsf{A} \ , \ \mathsf{B} \ , \ \mathsf{C} \qquad] \ \mathsf{Unvisited} = [\ \ \mathsf{D}, \ \ \mathsf{E}, \ \ \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\mathsf{Visited} = [\mathsf{A} , \mathsf{B} , \mathsf{C} , \mathsf{D}] \mathsf{Unvisited} = [\mathsf{E} , \mathsf{F} , \mathsf{G} , \mathsf{H}]$
- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A, B, C, D] Unvisited = [E, F, G, H]

Α

Α

В

С

D

C

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A, B, C, D] Unvisited = [E, F, G, H]

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = [\ \mathsf{A} \ , \ \mathsf{B} \ , \ \mathsf{C} \ , \ \mathsf{D} \ , \ \mathsf{E} \] \ \mathsf{Unvisited} = [\qquad \mathsf{F}, \ \ \mathsf{G}, \ \ \mathsf{H} \]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = \left[\begin{array}{cc} \mathsf{A} \mbox{ , } \mathsf{B} \mbox{ , } \mathsf{C} \mbox{ , } \mathsf{D} \mbox{ , } \mathsf{E} \end{array} \right] Unvisited = \left[\begin{array}{cc} \mathsf{F}, \mbox{ } \mathsf{G}, \mbox{ } \mathsf{H} \end{array} \right]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A, B, C, D, E, H] Unvisited = [F, G,]

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A, B, C, D, E, H] Unvisited = [F, G,]

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = \left[\begin{array}{cc} \mathsf{A} \mbox{ , } \mathsf{B} \mbox{ , } \mathsf{C} \mbox{ , } \mathsf{D} \mbox{ , } \mathsf{E} \mbox{ , } \mathsf{H} \end{array} \right] Unvisited = \left[\begin{array}{cc} \mathsf{F}, \mbox{ } \mathsf{G}, \end{array} \right]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\label{eq:Visited} Visited = [\ A \ , \ B \ , \ C \ , \ D \ , \ E \ , \ H \ , \ F \ \] \ Unvisited = [\qquad G, \quad]$

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

Visited = [A , B , C , D , E , H , F] Unvisited = [G,]

- Visit the unvisited vertex with he smallest known distance from the start vertex.
 - For the current vertex calculate the distance for all its unvisited neighbours from the source and update the known distance if the new distance is shorter

 $\mathsf{Visited} = [\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}, \mathsf{E}, \mathsf{H}, \mathsf{F}, \mathsf{G}] \mathsf{Unvisited} = [$

Dijkstra Algorithm: Proof of Correctness

- Assume that Dijkstra's algorithm does not always produce the shortest path.
- Let *u* be the first vertex for which the algorithm finds an incorrect shortest path.
- Assume the true shortest path to *u* is through a vertex *v*, but the algorithm incorrectly determines a different path.
- Since *u* is the first vertex with an incorrect path, *d*[*v*] must be correct when *u* is processed.
- When *u* is selected for processing, all vertices with shorter paths (including *v*) should have already been processed.
- However, since v was not processed before u, d[v] must be greater than d[u], contradicting the assumption that the path through v is shorter.
- Hence, the assumption that Dijkstra's algorithm does not always produce the shortest path is false.
- Therefore, Dijkstra's algorithm correctly finds the shortest path.

Dijkstra Algorithm: Proof of Correctness

Dijkstra Algorithm: Proof of Correctness

- Dijkstra's algorithm uses a priority queue for efficient distance updates.
- The main operations are:
 - Insertion into the priority queue.
 - Extracting the minimum element from the priority queue.
 - Decreasing the key value in the priority queue.
- Insertion and decrease-key operations take $O(\log V)$ time.
- Extract-min operation takes $O(\log V)$ time.
- Total time complexity with a binary heap is $O((V + E) \log V)$.
- For a complete graph, where $E = O(V^2)$:
- With a binary heap, the time complexity is $O(V^2 \log V)$.

- Used to find the shortest path between two locations, providing efficient routing for vehicles and pedestrians.
- Used in protocols like OSPF (Open Shortest Path First) to determine the most efficient path for data packets to travel across a network.
- Helps in planning and managing traffic flow by identifying the shortest routes and reducing congestion.
- Applied in optimizing delivery routes for logistics companies to ensure timely and cost-effective deliveries.
- Used in AI pathfinding to navigate characters or objects through complex environments in video games.

• Multi-Source Shortest Paths:

- Floyd-Warshall Algorithm: Solves for all pairs shortest paths in $O(V^3)$ time.
- Negative Weights:
 - Bellman-Ford Algorithm: Handles negative weights, runs in *O*(*VE*) time.
- Negative Weight Cycles:
 - Detects negative weight cycles, which can lead to undefined shortest paths.

Minimum Spanning Tree

MST: The Problem

- Find the subset of edges that connects all the vertices with the minimum total weight.
 - E.g., Given a weighted graph, find the minimum spanning tree that connects all nodes.
 - The resulting tree should have the minimum possible total edge weight.

Network Design:

• Used to design efficient networks (computer, telecommunication, etc.) with minimal wiring/cabling costs.

• Urban Planning:

• Helps in designing road networks to connect cities with minimum total road length.

• Clustering Analysis:

- Applied in hierarchical clustering methods to determine clusters in data.
- Circuit Design:
 - Used to minimize the total length of wires in circuit design.

Spanning Tree: Properties

- Given a graph G = (V, E)
 - A spanning tree of the graph will be a graph with $\left|V\right|$ vertices and $\left|V\right|-1$ edges
 - The number of possible spanning trees is |E|C(|V|-1) |C|, where C is the number of cycles in the graph

Spanning Tree: Properties

- Given a graph G = (V, E)
 - A spanning tree of the graph will be a graph with $\left|V\right|$ vertices and $\left|V\right|-1$ edges
 - The number of possible spanning trees is |E|C(|V|-1) |C|, where C is the number of cycles in the graph

Spanning Tree: Properties

- Given a graph G = (V, E)
 - A spanning tree of the graph will be a graph with $\left|V\right|$ vertices and $\left|V\right|-1$ edges
 - The number of possible spanning trees is |E|C(|V|-1) |C|, where C is the number of cycles in the graph

Example Spanning Trees

- (A, B), (B, C), (C, H), (C, E), (E, D), (E, G), (G, F)
- (A, C), (C, B), (B, D), (C, E), (E, H), (E, G), (D, F)

• Example: Consider the given graph and following spanning trees.

• (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)Poll 3

- (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)
 - Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21

- (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)
 - Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21
- What is the Weight of the MST: Poll 4

- (A, B) + (B, C) + (C, E) + (D, F) + (E, G) + (C, H) + (F, G)
 - Weight ST: 3 + 1 + 2 + 1 + 4 + 2 + 8 = 21
- What is the Weight of the MST: 16

Kruskal's Algorithm: Idea

• Greedy Choice Property:

- At each step, the algorithm makes a locally optimal choice by selecting the smallest weight edge available.
- This greedy choice leads to a globally optimal solution for the MST.

• Optimal Substructure:

- Any subset of edges that forms an MST for a subgraph of the original graph is part of the MST for the entire graph.
- This property allows the algorithm to build the MST incrementally.
- Kruskal's Algorithm constructs the MST by adding edges in increasing order of weight.
- At each step, the edge added does not form a cycle with the previously added edges.
- Uses a Disjoint Set data structure (Union-Find) to efficiently manage the connected components.

- A data structure that keeps track of a set of elements partitioned into disjoint (non-overlapping) subsets.
- Provides efficient operations to manage and merge these subsets.
- Key Operations:
 - Find: Determine the subset (or set representative) of an element.
 - Union: Merge two subsets into a single subset.
- Before adding an edge, use the Find operation to check if the two vertices are in the same subset.
- If they are in the same subset, adding the edge would form a cycle.
- If they are in different subsets, use the Union operation to merge the subsets, safely adding the edge without forming a cycle.

Algorithm 9 Kruskal's Algorithm

- 1: Input: Graph G = (V, E)
- 2: **Output:** Minimum Spanning Tree T
- 3: Sort edges E by weight
- 4: Initialize $T = \emptyset$
- 5: for each edge (u, v) in E (in increasing order of weight) do
- 6: **if** adding (u, v) to T does not form a cycle **then**
- 7: Add (u, v) to T
- 8: end if
- 9: end for
- 10: **return** *T*

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

• Edges added to MST:

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

• Edges added to MST:

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2
 - (C, H) = 2

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (B, D) = 3
- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (B, D) = 3
 - (A, B) = 3

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (B, D) = 3
 (A, B) = 3
 - (E, G) = 4

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- Edges added to MST:
 - (B, C) = 1
 - (D, F) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (B, D) = 3
 (A, B) = 3
 - (E, G) = 4

- Start with an empty MST.
 - Add the smallest edge that does not form a cycle.
 - Continue until the MST contains |V| 1 edges.

- MST: (B, C), (D, F), (C, E), (C, H), (B, D) ,(A, B), (E, G)
 - Weight = 1 + 1 + 2 + 2 + 3 + 3 + 4 = 16

- Assume that Kruskal's Algorithm does not produce a Minimum Spanning Tree (MST).
- Let *T* be the MST produced by Kruskal's Algorithm, and let *T*^{*} be the true MST.
- Assume that the total weight of *T* is greater than the total weight of *T*^{*}.

• Edge Addition:

- Kruskal's Algorithm adds edges in increasing order of weight.
- During the construction, if an edge *e* is added to *T* but not to *T*^{*}, replacing any edge in *T*^{*} with *e* would result in a spanning tree with equal or lesser weight.

• Cycle Formation:

- The Union-Find data structure ensures that adding *e* does not form a cycle.
- Therefore, every edge added maintains the acyclic property of T.

• Contradiction:

- Since *T* and *T*^{*} are both spanning trees and *T* is constructed by adding edges in increasing order of weight, it cannot have a greater total weight than *T*^{*}.
- Hence, the assumption that Kruskal's Algorithm does not produce an MST is false.

- Sorting the edges takes $O(E \log E)$ time.
- Each Union and Find operation takes $O(\log V)$ time.
- Overall time complexity is $O(E \log E + E \log V)$, which simplifies to $O(E \log V)$ for connected graphs.

Prim's Algorithm: Idea

- Greedy Choice Property:
 - At each step, the algorithm makes a locally optimal choice by selecting the smallest weight edge that connects a vertex in the MST to a vertex outside the MST.
 - This greedy choice ensures that the MST grows incrementally by always adding the minimum possible edge.

• Optimal Substructure:

- Any subset of edges that forms an MST for a subgraph of the original graph is part of the MST for the entire graph.
- This property allows the algorithm to build the MST incrementally, ensuring optimality at each step.
- Prim's Algorithm constructs the MST by starting from an arbitrary vertex and growing the MST one edge at a time.
- At each step, the algorithm selects the smallest weight edge that connects a vertex in the MST to a vertex outside the MST.
- Uses a priority queue (often implemented with a binary heap or Fibonacci heap) to efficiently select the next edge to add.

Prim's Algorithm: Pseudocode

Algorithm 10 Prim's Algorithm

- 1: Input: Graph G = (V, E), starting vertex s
- 2: Output: Minimum Spanning Tree T
- 3: Initialize distances $d[v] \leftarrow \infty$ for all $v \in V$ except $d[s] \leftarrow 0$
- 4: Initialize an empty priority queue Q
- 5: Insert s into Q with priority 0
- 6: while Q is not empty do
- 7: Extract vertex u with the smallest distance d[u] from Q
- 8: **for** each neighbor v of u **do**
- 9: **if** v is not in the MST and w(u, v) < d[v] then
- 10: $d[v] \leftarrow w(u, v)$
- 11: Insert v into Q with priority d[v]
- 12: end if
- 13: end for

14: end while

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3
 - (B, D) = 3
- MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
 - Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3
 - (B, D) = 3
- MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
 - Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3
 - (B, D) = 3
 - (D, F) = 1
- MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
 - Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3
 - (B, D) = 3
 - (D, F) = 1
- MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
 - Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

- Start with an arbitrary vertex.
 - Add the smallest edge that connects a vertex in the MST to a vertex outside the MST.
 - Continue until all vertices are included in the MST.

- Edges added to MST:
 - (B, C) = 1
 - (C, E) = 2
 - (C, H) = 2
 - (A, B) = 3
 - (B, D) = 3
 - (D, F) = 1
 - (E, G) = 4
- MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
 - Weight = 1 + 2 + 2 + 3 + 3 + 1 + 4 = 16

- Assume that Prim's Algorithm does not produce a Minimum Spanning Tree (MST).
- Let T be the MST produced by Prim's Algorithm, and let T^* be the true MST.
- Assume that the total weight of T is greater than the total weight of T*.
- Edge Addition:
 - Prim's Algorithm adds edges in increasing order of their weight, starting from an arbitrary vertex.
 - At each step, it selects the smallest edge that connects a vertex in *T* to a vertex outside *T*.
 - If an edge e is added to T but not to T*, replacing any edge in T* with e would result in a spanning tree with equal or lesser weight.

• Cycle Avoidance:

- Prim's Algorithm ensures that each added edge connects a vertex inside the MST to one outside, maintaining the acyclic property of *T*.
- Since *T* starts with a single vertex and grows by adding one edge at a time, no cycles can form.

• Contradiction:

- Since *T* and *T*^{*} are both spanning trees and *T* is constructed by adding edges in increasing order of weight, it cannot have a greater total weight than *T*^{*}.
- Hence, the assumption that Prim's Algorithm does not produce an MST is false.

• Conclusion:

• Prim's Algorithm correctly produces an MST.

- Using a binary heap, the time complexity is $O((V + E) \log V)$.
- Using a Fibonacci heap, the time complexity is $O(E + V \log V)$.
- For dense graphs, the time complexity is dominated by the number of edges.

• Kruskal's Algorithm:

- Constructs the MST by adding edges in increasing order of weight.
- At each step, the edge added does not form a cycle with the previously added edges.
- Uses a Disjoint Set data structure (Union-Find) to manage connected components.
- Suitable for sparse graphs.
- Time Complexity: $O(E \log E)$ (or $O(E \log V)$ if implemented with efficient union-find operations).

• Prim's Algorithm:

- Constructs the MST by starting from an arbitrary vertex and growing the MST one edge at a time.
- At each step, selects the smallest weight edge that connects a vertex in the MST to a vertex outside the MST.
- Uses a priority queue (binary heap or Fibonacci heap) for efficient edge selection.
- Suitable for dense graphs.
- Time Complexity: $O((V + E) \log V)$ with a binary heap, $O(E + V \log V)$ with a Fibonacci heap.

• Similarities:

- Both algorithms use a greedy approach to construct the MST.
- Both algorithms ensure the MST has the minimum total weight.
- Both algorithms maintain the properties of acyclic and connectivity.

• Differences:

- Approach:
 - Kruskal's: Edge-based, adds edges in increasing weight.
 - Prim's: Vertex-based, grows MST from a starting vertex.

• Data Structures:

- Kruskal's: Uses Union-Find for cycle detection.
- Prim's: Uses a priority queue for selecting the next edge.

• Efficiency:

- Kruskal's: More efficient for sparse graphs.
- Prim's: More efficient for dense graphs.

Conclusion

- A greedy algorithm is an algorithmic paradigm that builds up a solution piece by piece.
- Greedy algorithms are best suited for problems where:
 - The problem exhibits the greedy choice property.
 - The problem has optimal substructure.
 - A clear local optimum can be identified that leads to a global optimum.
 - Example problems include finding the minimum spanning tree, shortest paths in graphs, and constructing optimal codes.

- We discussed scheduling problems
 - Interval Scheduling
 - Interval Partitioning
 - Minimizing Lateness
- Fractional knapsack
- We presented greedy algorithms to the problems
 - We showed these algorithms result in correct output
 - We showed the greedy properties of each
 - We showed the running time of these algorithms

- Greedy algorithms for graph
 - Single Source shortest path with Dijkstra Algorithm
 - Minimum Spanning Tree
 - Kruskal's algorithm
 - Prim's algorithms
- Example applications of these problems/algorithms

- Shortest Path Problem
 - General Idea: https://www.youtube.com/watch?v=Aa2sqUhIn-E
 - Dijkstra's Algorithm:
 - https://www.youtube.com/watch?v=pVfj6mxhdMw
 - https://www.youtube.com/watch?v=2E7MmKv0Y24
 - https://www.youtube.com/watch?v=HXhJIDB6EcM
- MST:
 - https://www.youtube.com/watch?v=Yldkh0aOEcg
 - https://www.youtube.com/watch?v=tKwnms5iRBU