

Graphs: Refresher

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

- 1. Motivation
- 2. Definition
- 3. Traversal

Breadth-First Search (BFS) Depth-First Search (DFS)

- 4. Implementation
- 5. Conclusion

Motivation

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks
 - The World Wide Web

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks
 - The World Wide Web
 - Social Networks

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks
 - The World Wide Web
 - Social Networks
 - Software Systems

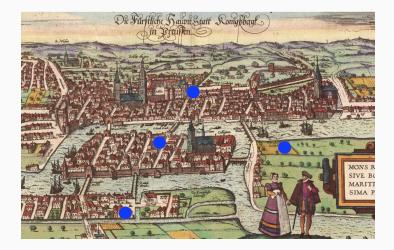
- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks
 - The World Wide Web
 - Social Networks
 - Software Systems
 - Job scheduling

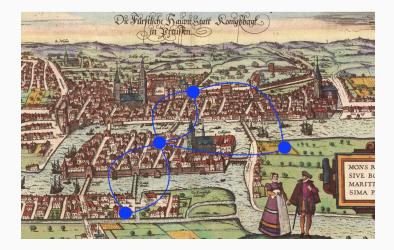
- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
 - Computer networks
 - The World Wide Web
 - Social Networks
 - Software Systems
 - Job scheduling
 - Word Morphology, and more
- In CS, we use graph data structure when we want to model non linear data structures

Euler's Problem

Euler's Problem

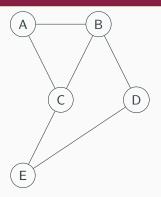
• Devise a walk through the city that crosses each of the bridges exactly once.





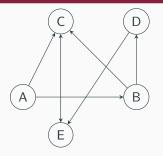
Definition

Definition: Undirected Graph



- Undirected graph G = (V, E): set V of nodes and set E of edges, where E ⊂ V × V
- Elements of E are **unordered** pairs.
- Edge (u, v) is incident on u, v; u and v are neighbours of each other.
- Exactly one edge between any pair of nodes.
- G contains no self loops, i.e., no edges of the form (u, u).

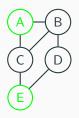
Definition: Directed Graph



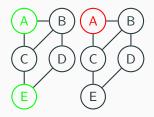
- Directed graph G = (V, E): set V of nodes and set E of edges, where E ⊂ V × V
- Elements of E are ordered pairs.
- Edge (*u*, *v*): u is the tail of the edge e, v is its head; e is directed from u to v.
- A pair of nodes may be connected by two directed edges: (u, v) and (v, u).
- G contains no self loops, i.e., no edges of the form (u, u).

A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.

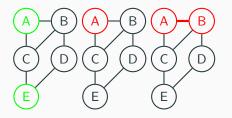
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.



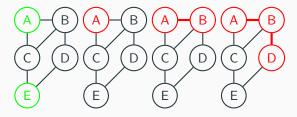
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.



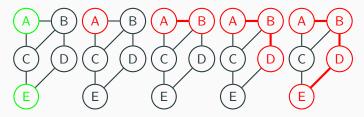
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.



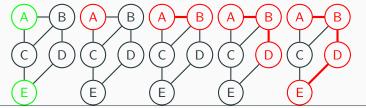
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.



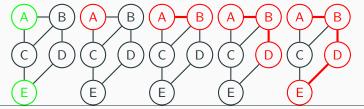
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.

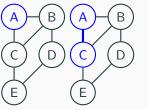


- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.

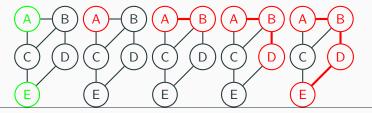


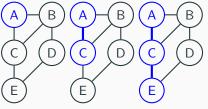
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.





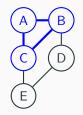
- A v₁ − v_k path in an undirected graph G = (V, E) is a sequence P of nodes v₁, v₂, ..., v_{k-1}, v_k ∈ V such that every consecutive pair of nodes v_i, v_{i+1}, 1 ≤ i < k is connected by an edge in E.
- A path is simple if all its nodes are distinct.



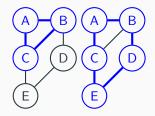


• A cycle is a path where k > 2, the first k - 1 nodes are distinct, and $v_1 = v_k$.

• A cycle is a path where k > 2, the first k - 1 nodes are distinct, and $v_1 = v_k$.



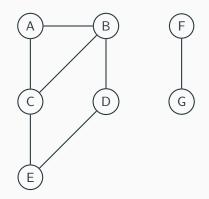
• A cycle is a path where k > 2, the first k - 1 nodes are distinct, and $v_1 = v_k$.



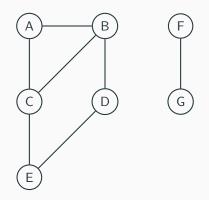
An undirected graph G is connected if for every pair of nodes u, v ∈ V, there is a path from u to v in G.

- An undirected graph G is connected if for every pair of nodes $u, v \in V$, there is a path from u to v in G.
- Distance d(u, v) between two nodes u and v is the minimum number of edges in any u - v path.

- An undirected graph G is connected if for every pair of nodes u, v ∈ V, there is a path from u to v in G.
- Distance d(u, v) between two nodes u and v is the minimum number of edges in any u - v path.

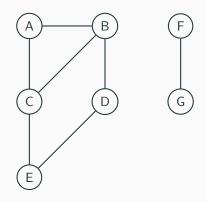


- An undirected graph G is connected if for every pair of nodes u, v ∈ V, there is a path from u to v in G.
- Distance d(u, v) between two nodes u and v is the minimum number of edges in any u - v path.

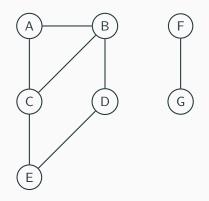


• Similar definitions carry over to directed graphs as well.

Example: Connectivity

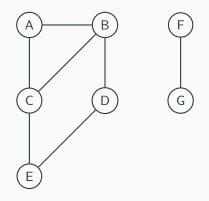


Example: Connectivity

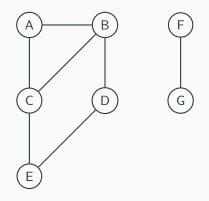


• Questions

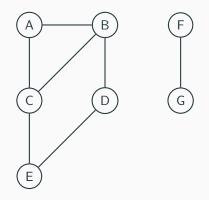
Example: Connectivity



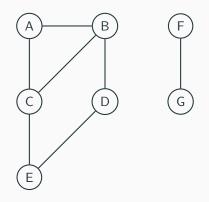
- Questions
 - Is there a path between F and C:



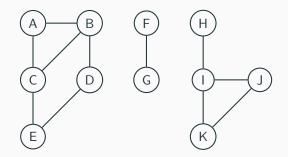
- Questions
 - $\bullet~$ Is there a path between F and C: No



- Questions
 - $\bullet~$ Is there a path between F and C: No
 - What's the distance between D and A :

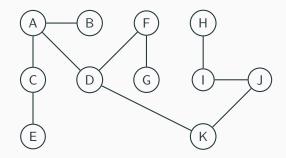


- Questions
 - $\bullet~$ Is there a path between F and C: No
 - $\bullet\,$ What's the distance between D and A : 2



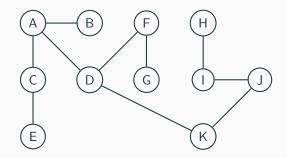
- The connected component of the graph containing E is the set of all nodes u such that there is a path between E and u path in the graph.
- Algorithm for the S-T Connectivity problem: compute the connected component of G that contains S and check if T is in that component.

Definition: Tree



• A connected graph G is said to be a **Tree** if there are nos cycles in the graph

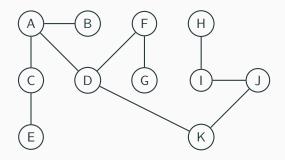
Definition: Tree



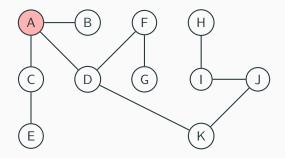
- A connected graph G is said to be a **Tree** if there are nos cycles in the graph
- If two of the following are true the third is true.
 - G is a Tree
 - G is connected
 - G does not have a cycle

Traversal

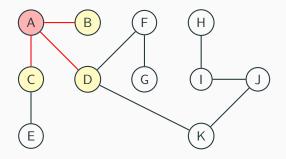
- Breadth-First Search (BFS) is an algorithm for traversing or searching tree or graph data structures.
- It starts at the root (or an arbitrary node in the case of a graph) and explores all neighbors at the present depth prior to moving on to nodes at the next depth level.
- BFS uses a queue to keep track of the next node to explore, ensuring all nodes at the current depth are visited before moving deeper.
- BFS is useful for:
 - Finding the shortest path in unweighted graphs.
 - Finding all nodes within one connected component.



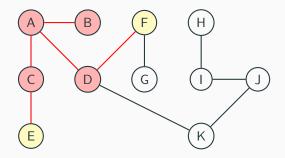
BFS: Example (Step 1)



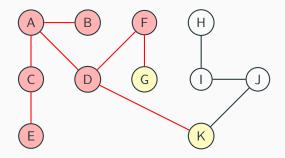
BFS: Example (Step 2)



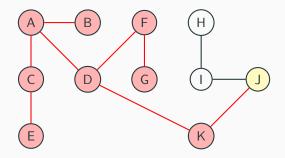
BFS: Example (Step 3)



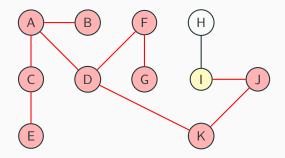
BFS: Example (Step 4)



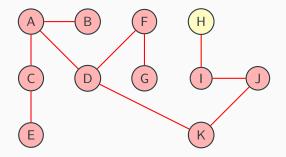
BFS: Example (Step 5)



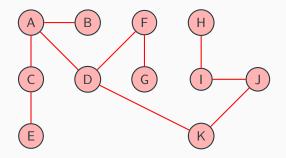
BFS: Example (Step 6)



BFS: Example (Step 7)



BFS: Example (Step 8)



BFS: Algorithm

Algorithm 1 Breadth-First Search (BFS)

- 1: Input: Graph G = (V, E), starting node s
- 2: Output: Set of visited nodes
- 3:
- 4: function BFS(G, s):
- 5: let Q be a queue
- 6: **initialize** Q with s
- 7: mark s as visited
- 8: while Q is not empty do
- 9: $v \leftarrow$ dequeue Q
- 10: for each neighbor w of v do
- 11: **if** *w* is not visited **then**
- 12: mark w as visited
- 13: enqueue w into Q
- 14: end if
- 15: end for
- 16: end while

• Time Complexity: O(V + E)

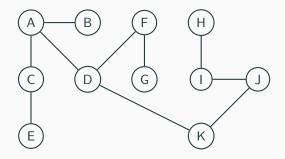
- Each vertex is enqueued and dequeued at most once.
- Each edge is considered once when exploring the vertex at one end of the edge.
- Therefore, the total work done is proportional to the sum of the number of vertices and edges.
- Space Complexity: O(V)
 - We need to store the visited status of each vertex, which requires O(V) space.
 - The queue can grow to at most O(V) size if all vertices are at the same level.

- Shortest path in unweighted graphs:
 - BFS finds the shortest path (minimum number of edges) from the source node to all other nodes.
 - Useful in scenarios like finding the shortest route in a road network where all roads have the same length.
- Finding connected components in a graph:
 - BFS can be used to explore all nodes in a connected component starting from any node in the component.
 - Helps in identifying and counting isolated subgraphs within a larger graph.
- Level-order traversal of a tree:
 - In trees, BFS is used for level-order traversal, visiting nodes level by level.
 - Commonly used in scenarios like breadth-first search in AI and game development.

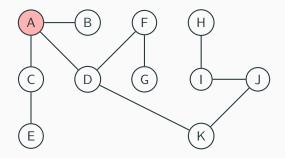
• Web crawling:

- BFS is used to crawl web pages starting from a given URL and exploring all reachable pages within a certain depth.
- Ensures that all pages at the current depth are visited before moving to deeper levels.
- Social network analysis:
 - BFS can help in exploring social networks to find shortest connections between individuals.
 - Useful for analyzing degrees of separation and influence spread in networks like Facebook or LinkedIn.

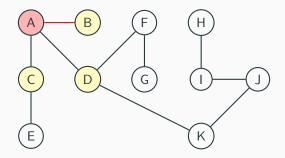
- Depth-First Search (DFS) is an algorithm for traversing or searching tree or graph data structures.
- It starts at the root (or an arbitrary node in the case of a graph) and explores as far as possible along each branch before backtracking.
- DFS uses a stack (or recursion) to keep track of the path being explored.
- DFS is useful for:
 - Pathfinding in mazes.
 - Topological sorting.
 - Detecting cycles in graphs.



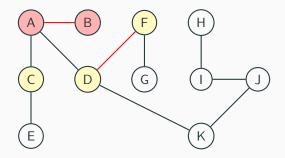
DFS: Example (Step 1)



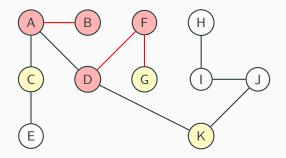
DFS: Example (Step 2)



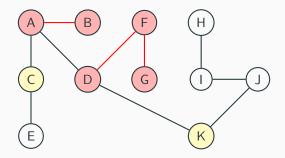
DFS: Example (Step 3)



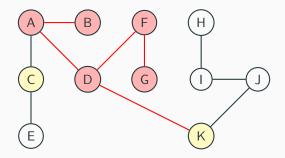
DFS: Example (Step 4)



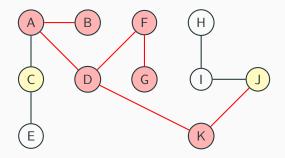
DFS: Example (Step 5)



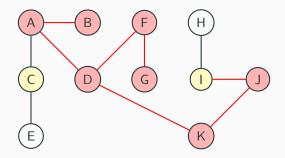
DFS: Example (Step 6)



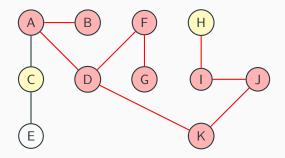
DFS: Example (Step 7)



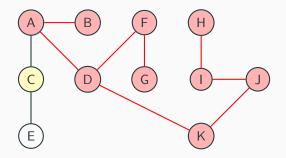
DFS: Example (Step 8)



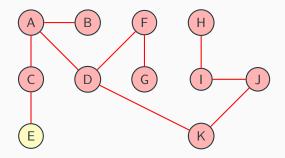
DFS: Example (Step 9)



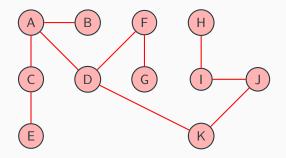
DFS: Example (Step 10)



DFS: Example (Step 11)



DFS: Example (Step 12)



DFS: Algorithm

Algorithm 2 Depth-First Search (DFS)

- 1: Input: Graph G = (V, E), starting node s
- 2: Output: Set of visited nodes
- 3:
- 4: function DFS(G, s):
- 5: **initialize** an empty stack *S*
- 6: **push** *s* onto *S*
- 7: mark s as visited
- 8: while *S* is not empty do
- 9: $v \leftarrow \mathbf{pop} \ S$
- 10: for each neighbor w of v do
- 11: **if** *w* is not visited **then**
- 12: mark w as visited
- 13: **push** *w* onto *S*
- 14: end if
- 15: end for
- 16: end while

- Time Complexity: O(V + E)
 - Each vertex is pushed and popped from the stack at most once.
 - Each edge is explored once when visiting the vertex at one end of the edge.
 - Therefore, the total work done is proportional to the sum of the number of vertices and edges.
- Space Complexity: O(V)
 - We need to store the visited status of each vertex, which requires O(V) space.
 - The stack can grow to at most O(V) size in the worst case (when the graph is a single path).

• Pathfinding in mazes:

- DFS is useful for exploring all possible paths in a maze or labyrinth.
- It helps in finding a path from the start to the end by exploring deeper into the maze.
- Topological sorting:
 - DFS is used in topological sorting of directed acyclic graphs (DAGs).
 - It helps in ordering tasks or vertices such that for every directed edge *uv*, vertex *u* comes before *v*.

• Detecting cycles in graphs:

- DFS can detect cycles in both directed and undirected graphs.
- By keeping track of visited nodes and the recursion stack, DFS identifies back edges that form cycles.

• Finding connected components:

- DFS is used to find all vertices in a connected component of an undirected graph.
- Helps in identifying and counting isolated subgraphs within a larger graph.
- Solving puzzles with only one solution:
 - Puzzles like Sudoku can be solved using DFS by exploring possible solutions depth-wise.
 - Ensures all potential paths are explored until the correct solution is found.

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible
- Paths in DFS trees tend to be long and deep.

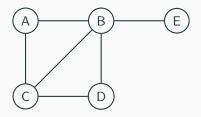
Implementation

Implementation: Representing Graphs

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - Size of the graph is defined to be m + n.
 - Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
- Adjacency matrix: n × n Boolean matrix, where the entry in row i and column j is 1 if and only if the graph contains the edge (i, j).
- Adjacency list: array Adj, where Adj[v] stores a linked list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

Operation/Space	Adj. matrix	Adj. list
Is (i, j) an edge?	O(1)time	$O(n_i)$
Iterate over all edges incident on node <i>i</i>	O(n)time	$O(n_i)$
Space	$O(n^2)$	O(n+m)

Graph Representations: Example



Adiacencv	matrix	representation

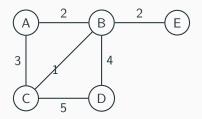
-			-			
				D		
А	0	1	1	0	0	
В	1	0	1	1	1	
С	1	1	0	1	0	
D	0	1	1	0 1 1 0 0	0	
Е	0	1	0	0	0	

	cency list representation
	Neighbors
А	B, C A, C, D, E A, B, D
В	A, C, D, E
С	A, B, D

D B, C

E B

Graph Representations: Example 2



Adjuccincy matrix representation	Adjacency	matrix	representation
----------------------------------	-----------	--------	----------------

				D	Е
А	0	2	3	0	0
В	2	0	1	4	2
C D	3	1	0	5	0
D	0 2 3 0	4	5	0	0
Е	0	2	0	0	0

Adjacency	list	representation
-----------	------	----------------

	Neighbors
А	B (2), C (3) A (2), C (1), D (4), E (2) A (3), B (1), D (5) B (4), C (5)
В	A (2), C (1), D (4), E (2)
С	A (3), B (1), D (5)
D	B (4), C (5)
Е	B (2)

- "Implementation" of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
 - BFS: store visited nodes in a queue (first-in, first-out).
 - DFS: store visited nodes in a stack (last-in, first-out)

Conclusion

- We discussed the motivation behind graph data structures
- Problems that can be solved with graph modeling
- Definitions and properties
- Graph representations
- Graph traversal algorithms

- Greedy Algorithms
 - Both with linear and graphs data structures
 - More graph examples

• Parts of the slides adopted from T. M. Murali @ VT