

## **Example Problem: Stable Matching**

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

- 1. The Problem
- 2. The Algorithm
- 3. A Few More Problems

Interval Scheduling

Weighted Interval Scheduling

**Bipartite Matching** 

Independent Set

Competitive Facility Location

## **The Problem**

- Originated in 1962 by David Gale and Lloyd Shapley
- They wanted to implement a self-enforcing college admissions process
- This is also called Gale-Shapley Matching
- National Resident Matching Program had been using a very similar procedure

• Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true
    - e prefers every one of its accepted applicants to a; or

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true
    - e prefers every one of its accepted applicants to a; or
    - a prefers her current situation over working for employer e.

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true
    - e prefers every one of its accepted applicants to a; or
    - a prefers her current situation over working for employer e.
  - Conversely, a matching of applicants (a, e)and(a', e') for e, e' ∈ Eanda, a' ∈ A is unstable if both of the following hold

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true
    - e prefers every one of its accepted applicants to a; or
    - a prefers her current situation over working for employer e.
  - Conversely, a matching of applicants (a, e)and(a', e') for e, e' ∈ Eanda, a' ∈ A is unstable if both of the following hold
    - e prefers a' over a

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- What is stable?
  - For every applicants a ∈ A who is not scheduled to work for e ∈ E, at least one of the following is true
    - e prefers every one of its accepted applicants to a; or
    - *a* prefers her current situation over working for employer *e*.
  - Conversely, a matching of applicants (a, e)and(a', e') for e, e' ∈ Eanda, a' ∈ A is unstable if both of the following hold
    - e prefers a' over a
    - a' prefers e over e'

• So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A matching, if each member of *M* and each member of *W* appears in at *most one* pair in *S*.

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A matching, if each member of *M* and each member of *W* appears in at *most one* pair in *S*.
  - A perfect matching, if each member of *M* and each member of *W* appears in *exactly one* pair in *S*.

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A matching, if each member of *M* and each member of *W* appears in at *most one* pair in *S*.
  - A perfect matching, if each member of *M* and each member of *W* appears in *exactly one* pair in *S*.
  - **Stable**, if one of the following holds for every pair  $a, e \in S$

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A matching, if each member of *M* and each member of *W* appears in at *most one* pair in *S*.
  - A perfect matching, if each member of *M* and each member of *W* appears in *exactly one* pair in *S*.
  - Stable, if one of the following holds for every pair  $a, e \in S$ 
    - e prefers every one of its accepted applicants to a; or

- So consider a set  $M = m_1, ..., m_n$  of n men, and a set  $W = w_1, ..., w_n$  of n women.
- Let MxW denote the set of all possible ordered pairs of the form (m, w), where m ∈ M and w ∈ W.
- A set of ordered pairs  $S \in (M \times W)$  is
  - A matching, if each member of *M* and each member of *W* appears in at *most one* pair in *S*.
  - A perfect matching, if each member of *M* and each member of *W* appears in *exactly one* pair in *S*.
  - Stable, if one of the following holds for every pair  $a, e \in S$ 
    - e prefers every one of its accepted applicants to a; or
    - *a* prefers her current situation over working for employer *e*.

- Each man ranks all the women in order of preference.
- Each woman ranks all the men in order of preference.
- Each person uses all ranks from 1 to n, i.e., no ties, no incomplete lists.

- Each man ranks all the women in order of preference.
- Each woman ranks all the men in order of preference.
- Each person uses all ranks from 1 to n, i.e., no ties, no incomplete lists.

| Men     | 1                        | 2         | 3         | 4        |
|---------|--------------------------|-----------|-----------|----------|
| Alex    | Callie                   | Christina | Meredith  | Miranda  |
| Derek   | Meredith                 | Miranda   | Christina | Callie   |
| Jackson | n Meredith Miranda       |           | Christina | Callie   |
| Preston | reston Christina Miranda |           | Callie    | Meredith |

| Women     | 1     | 2       | 3       | 4       |
|-----------|-------|---------|---------|---------|
| Callie    | Alex  | Derek   | Jackson | Preston |
| Christina | Derek | Preston | Jackson | Alex    |
| Meredith  | Derek | Jackson | Preston | Alex    |
| Miranda   | Derek | Jackson | Alex    | Preston |

#### **Example: Matching**

|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derel | Jacks | Prest |
|-----------|------|-------|-------|-------|
| Callie    | 1    | 2     | 3     | 4     |
| Christina | 4    | 1     | 3     | 2     |
| Meredith  | 4    | 1     | 2     | 3     |
| Miranda   | 3    | 1     | 2     | 4     |

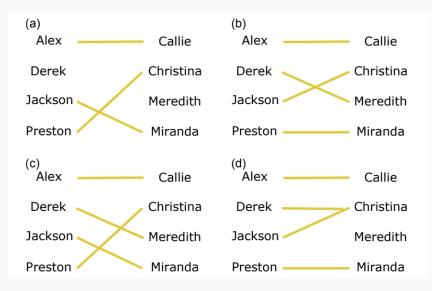
on o



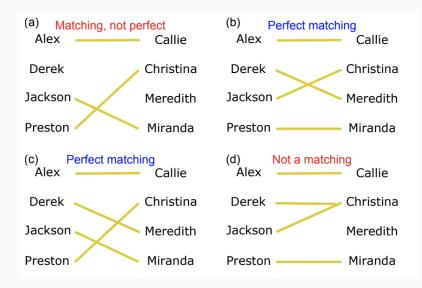
- Matching: each man is paired with  $\leq 1$  woman and vice versa.
- **Perfect matching**: each man is paired with exactly one woman and vice versa.

#### Note

"**Perfect**": only means one-to-one mapping, not that people are happy with matches or its stable.



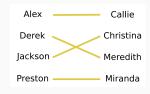
### Other "matching"



|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derek | Jackso | Presto |
|-----------|------|-------|--------|--------|
| Callie    | 1    | 2     | 3      | 4      |
| Christina | 4    | 1     | 3      | 2      |
| Meredith  | 4    | 1     | 2      | 3      |
| Miranda   | 3    | 1     | 2      | 4      |

**2 2** 

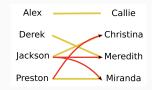


Are there problems with this matching?

|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derek | Jackso | Presto |
|-----------|------|-------|--------|--------|
| Callie    | 1    | 2     | 3      | 4      |
| Christina | 4    | 1     | 3      | 2      |
| Meredith  | 4    | 1     | 2      | 3      |
| Miranda   | 3    | 1     | 2      | 4      |

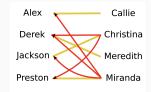
**2 2** 



Are there problems with this matching?

|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derek | Jackson | Preston |
|-----------|------|-------|---------|---------|
| Callie    | 1    | 2     | 3       | 4       |
| Christina | 4    | 1     | 3       | 2       |
| Meredith  | 4    | 1     | 2       | 3       |
| Miranda   | 3    | 1     | 2       | 4       |



Are there problems with this matching?



**Rogue couple:** a man and a woman who are not matched but prefer each other to their current partners.

#### **Stable Matching**

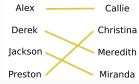
|         | Callie | hristina | leredith | liranda |           | Alex | Derek | Jackson | Preston | Alex Callie<br>Derek Christina |
|---------|--------|----------|----------|---------|-----------|------|-------|---------|---------|--------------------------------|
| Alex    |        | 2        | ≥<br>3   | ≥<br>4  | Callie    | 1    | 2     | 3       | 4       | Jackson Meredith               |
|         | 1      |          | 5        | · ·     | Christina | 4    | 1     | 3       | 2       |                                |
| Derek   | 4      | 3        | 1        | 2       | Meredith  | 4    | 1     | 2       | 3       | Preston / Miranda              |
| Jackson | 4      | 3        | 1        | 2       | Miranda   | 3    | 1     | 2       | 4       | -                              |
| Preston | 3      | 1        | 4        | 2       |           | 5    | 1     | 2       | Ŧ       | ]                              |

Stable matching: A perfect matching without any rogue couples.

#### **Stable Matching**

|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derek | Jackson | Prestor | 1  |
|-----------|------|-------|---------|---------|----|
| Callie    | 1    | 2     | 3       | 4       | Ja |
| Christina | 4    | 1     | 3       | 2       |    |
| Meredith  | 4    | 1     | 2       | 3       | Ρ  |
| Miranda   | 3    | 1     | 2       | 4       |    |



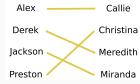
Stable matching: A perfect matching without any rogue couples.



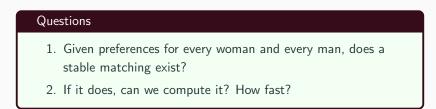
#### **Stable Matching**

|         | Callie | Christina | Meredith | Miranda |
|---------|--------|-----------|----------|---------|
| Alex    | 1      | 2         | 3        | 4       |
| Derek   | 4      | 3         | 1        | 2       |
| Jackson | 4      | 3         | 1        | 2       |
| Preston | 3      | 1         | 4        | 2       |

|           | Alex | Derek | Jacksoi | Prestor |
|-----------|------|-------|---------|---------|
| Callie    | 1    | 2     | 3       | 4       |
| Christina | 4    | 1     | 3       | 2       |
| Meredith  | 4    | 1     | 2       | 3       |
| Miranda   | 3    | 1     | 2       | 4       |



#### Stable matching: A perfect matching without any rogue couples.

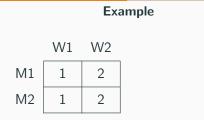


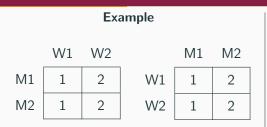
# The Algorithm

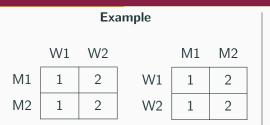
- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- We will start with a simple version of the problem
  - Let's assume there are only two men and two women
  - What are the possible permutations of preferences?

- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- We will start with a simple version of the problem
  - Let's assume there are only two men and two women
  - What are the possible permutations of preferences?
    - *M*<sub>1</sub>[*W*<sub>1</sub>, *W*<sub>2</sub>]; *M*<sub>1</sub>[*W*<sub>2</sub>, *W*<sub>1</sub>] *M*<sub>2</sub>[*W*<sub>1</sub>, *W*<sub>2</sub>]; *M*<sub>2</sub>[*W*<sub>2</sub>, *W*<sub>1</sub>]

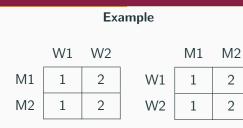
- Given of preferences among employers (E) and applicants (A), can we come up with a stable matching?
- We will start with a simple version of the problem
  - Let's assume there are only two men and two women
  - What are the possible permutations of preferences?
    - $M_1[W_1, W_2]; M_1[W_2, W_1]$  $M_2[W_1, W_2]; M_2[W_2, W_1]$
    - W<sub>1</sub>[M<sub>1</sub>, M<sub>2</sub>]; W<sub>1</sub>[M<sub>2</sub>, M<sub>1</sub>] W<sub>2</sub>[M<sub>1</sub>, M<sub>2</sub>]; W<sub>2</sub>[M<sub>2</sub>, M<sub>1</sub>]

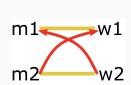




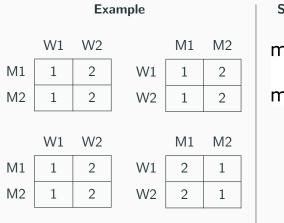


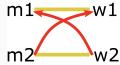


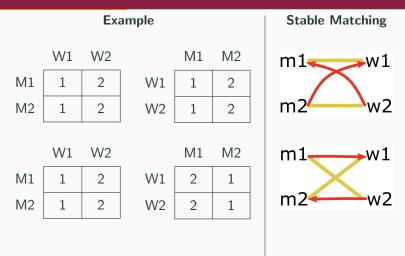


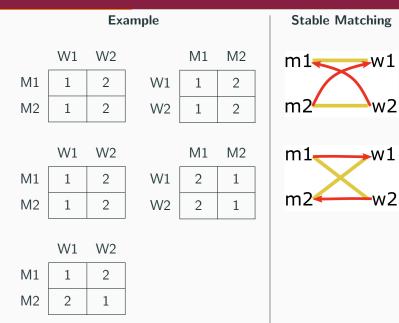


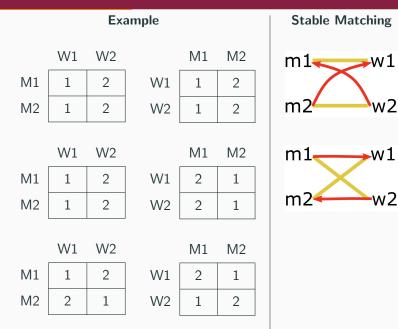
|    | W1 | W2 |
|----|----|----|
| M1 | 1  | 2  |
| M2 | 1  | 2  |

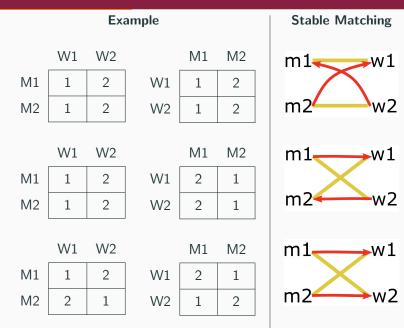












Can you create an example that does not have a stable matching?

Initially all men and women are free
while there is a man m who is free and hasn't proposed to ev
Choose such a man m
m proposes to the highest-ranked woman in m's preference
if w is free then
 (m, w) become engaged -> Add (m,w) from S
else if w is engaged to m' but prefers m to m' then
 m' becomes free -> Delete (m',w) from S

(m, w) become engaged -> Add (m,w) from S
else

m remains free return the set S of engaged pairs

### The Algorithm

- Each man proposes to each woman, in decreasing order of preference.
- Woman accepts if she is free or prefers new prospect to current fiance.

#### What can go wrong?

- Does the algorithm even terminate?
- If it does, how long does the algorithm take to run?
- If it does, is S a perfect matching? A stable matching ?

- Gale-Shapley algorithm computes a matching, i.e., each woman paired with at most one man and vice versa.
- Man's status: Can alternate between being free and being engaged.
- Woman's status: Remains engaged after first proposal.
- Ranking of a man's partner: Remains the same or goes down.
- Ranking of a woman's partner: Can never go down.

#### Proof?

Can we prove that that GS algorithms produces a **terminates** with **stable matching** 

• Is there some quantity that we can use the measure the progress of the algorithm in each iteration?

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.
  - Number of proposals made after k iterations?

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.
  - Number of proposals made after k iterations?
    - Must increase by one in each iteration.

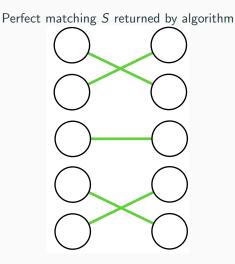
- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.
  - Number of proposals made after k iterations?
    - Must increase by one in each iteration.
  - How many total proposals can be made?

- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.
  - Number of proposals made after k iterations?
    - Must increase by one in each iteration.
  - How many total proposals can be made?
    - n<sup>2</sup>

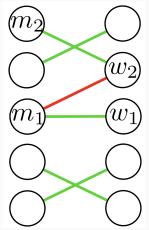
- Is there some quantity that we can use the measure the progress of the algorithm in each iteration?
  - Number of free men?
  - Number of free women?
    - No, since both can remain unchanged in an iteration.
  - Number of proposals made after k iterations?
    - Must increase by one in each iteration.
  - How many total proposals can be made?
    - n<sup>2</sup>
    - The algorithm must terminate in  $n^2$  iterations

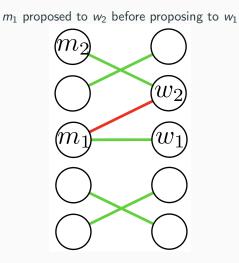
# **Correctness Proof: Matching Computed is Perfect**

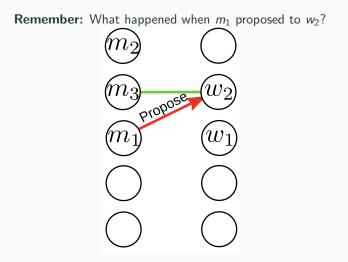
- Suppose the set *S* of pairs returned by the GS algorithm is not perfect.
- S is a matching. Therefore, there must be at least one free man m.
- *m* has proposed to all the women (since algorithm terminated).
- Therefore, each woman must be engaged (since she remains engaged after the first proposal to her).
- Therefore, all men must be engaged, contradicting the assumption that *m* is free.
- Proof that matching is perfect relies on
  - proof that the algorithm terminated and
  - the very specific termination condition.



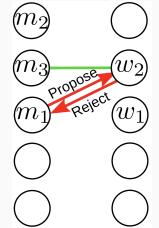
- Not stable:  $m_1$  paired with  $w_1$  but prefers  $w_2$ ;
- $w_2$  paired with  $m_2$  but prefers  $m_1$



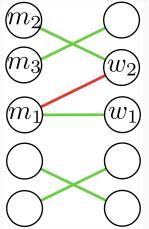


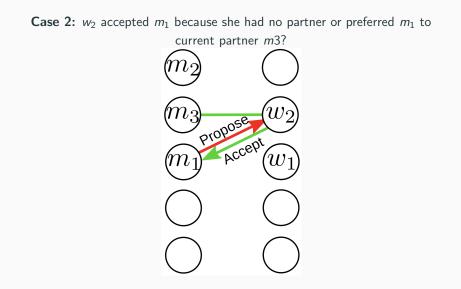


**Case 1:**  $w_2$  rejected  $w_1$  because she preferred current partner  $m_3$ ?

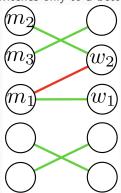


**Case 1:** At termination  $w_2$  must prefer her final partner  $m_2$  to  $m_3$ . Contradicts consequence of instability:  $m_2$  prefers  $m_1$  to  $m_2$ ?





**Case 2:** By instability, we know  $w_2$  prefers  $m_1$  to  $m_2$ . But at termination,  $w_2$  is matched with  $m_2$ , which contradicts property that a woman switches only to a better match.



- Suppose S is not stable,
  - there are two pairs  $(m_1, w_1)$  and  $(m_2, w_2)$  in S such that  $m_1$  prefers  $w_2$  to  $w_1$  and  $w_2$  prefers  $m_1$  to  $m_2$ .
- $m_1$  must have proposed to  $w_2$  before  $w_1$
- At that stage w<sub>2</sub> must have rejected m<sub>1</sub>
  - otherwise, the algorithm would pair  $m_1$  and  $w_2$ ,
  - would prevent the pairing of  $m_2$  and  $w_2$  in a later iteration of the algorithm.
- When w<sub>2</sub> rejected m<sub>1</sub>, she must have been paired with some man, say m<sub>3</sub>, whom she prefers to m<sub>1</sub>.
- Since  $m_2$  is paired with  $w_2$  at termination,  $w_2$  must prefer to  $m_2$  to  $m_3$  or  $m_2 = m_3$ ,
  - contradicts our conclusion that  $w_2$  prefers m1 to  $m_2$ .

- Multiple residents
  - Each hospital can take multiple residents.
  - Modification of Gale-Shapley algorithm works.
  - Some residents may not be matched.
  - Some hospitals may not fill quota.
- Hospitals and residents with couples
  - Each hospital can take multiple residents.
  - A couple must be assigned together, either to the same hospital or to a specific pair of hospitals chosen by the couple
  - NP-Complete

- Stable roommates
  - There is only one pool of people
  - Stable matching may not exist.
  - Irving's algorithm; more complex than Gale-Shapley.
- Complex preferences
  - Preferences may be incomplete or have ties or people may lie.
  - Several variants are NP-hard, even to approximate.

## **A Few More Problems**

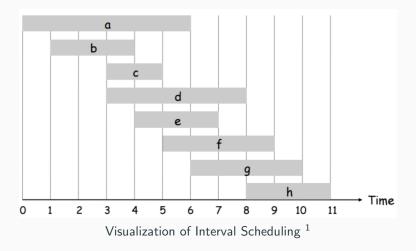
## Interval Scheduling: Idea

- Say you have a resource to be scheduled for
  - It may be a lecture room, a supercomputer, or an electron microscope
- Many people request to use the resource for periods of time.
- A request takes the form:
  - Can I reserve the resource starting at time s, until time f?
- We will assume that the resource can be used by at most one person at a time.
- A scheduler wants to accept a subset of these requests, rejecting all others, so that the accepted requests do not overlap in time.
- The goal is to maximize the number of requests accepted.

## Interval Scheduling: Formally

- There will be *n* requests labeled 1, ..., *n*
- Each request *i* specifying a start time *s<sub>i</sub>* and a finish time *f<sub>i</sub>*
- We have  $s_i < f_i$  for all i
- Two requests *i* and *j* are compatible if the requested intervals do not overlap:
  - either request *i* is for an earlier time interval than request  $j(f_i \leq s_j)$ ,
  - or request *i* is for a later time than request  $j(f_j s_i)$ .
- Generally that a subset A of requests is compatible if all pairs of requests *i*, *j* ∈ A, *i* ≠ *j* are compatible.
- The goal is to select a compatible subset of requests of maximum possible size.
- Interval Scheduling has a Greedy Algorithm Solution

## Interval Scheduling: Visually



<sup>&</sup>lt;sup>1</sup>Image Credit: https:

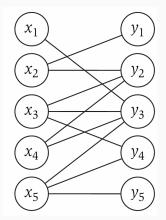
//stumash.github.io/Algorithm\_Notes/greedy/intervals/intervals.html

- A modification to Interval Scheduling Problem
- Suppose more generally that each request interval i has an associated value, or weight,  $v_i > 0$ 
  - We could picture this as the amount of money we will make from the *i*<sup>t</sup> *h* individual if we schedule his or her request.
- Our goal will be to find a compatible subset of intervals of maximum total value.
- The case in which  $v_i = 1$  for each *i* is simply the basic Interval Scheduling Problem
- The appearance of arbitrary values changes the nature of the maximization problem quite a bit.

- Consider, for example, that if v<sub>1</sub> exceeds the sum of all other v<sub>i</sub>, then the optimal solution must include interval 1 regardless of the configuration of the full set of intervals.
- So any algorithm for this problem must be very sensitive to the values, and yet degenerate to a method for solving (unweighted) interval scheduling when all the values are equal to 1.
- There appears to be no simple greedy rule that walks through the intervals one at a time, making the correct decision in the presence of arbitrary values.
- Instead, we employ a technique, dynamic programming
- It builds up the optimal value over all possible solutions in a compact, tabular way that leads to a very efficient algorithm.

- A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.
- Bipartite matching involves finding a maximum matching, which is the largest subset of edges such that no two edges share a common vertex.
- Used in job assignments, network flows, and resource allocation.

## **Bipartite Matching**



A bipartite graph <sup>2</sup>

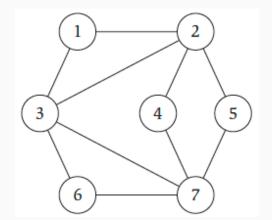
 $<sup>^2 {\</sup>rm Image}$  Credit: "Algorithm Design" Jon Kleinberg and Eva Tardos - Addison Wesley (2005)

- Maximum matching is the largest set of edges with no shared vertices.
- Perfect matching a matching that covers every vertex in the graph.
- Augmenting Path a path that can increase the size of the current matching.
- Algorithms for Bipartite Matching
  - Hungarian Algorithm: Efficient for finding maximum matching in bipartite graphs.
  - Hopcroft-Karp Algorithm: Improves performance for large bipartite graphs.
- Interval scheduling can be transformed into a bipartite matching problem by representing intervals as nodes in a bipartite graph.

#### Independent Set: The Problem

- Given a graph G = (V, E), we say a set of nodes S V is independent if no two nodes in S are joined by an edge.
- The Independent Set Problem is, then, the following: Given G, find an independent set that is as large as possible.
- The Independent Set Problem encodes any situation in which you are trying to choose from among a collection of objects and there are pairwise conflicts among some of the objects.
- Say you have n friends, and some pairs of them don't get along.
- How large a group of your friends can you invite to dinner if you don't want any interpersonal tensions?
- This is simply the largest independent set in the graph whose nodes are your friends, with an edge between each conflicting pair.

#### Independent Set: Example



A graph whose largest independent set has size 4 (1,4,5,6).<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Image Credit: "Algorithm Design" Jon Kleinberg and Eva Tardos - Addison Wesley (2005)

- No efficient algorithm is known for the Independent Set problem, and it is conjectured that no such algorithm exists.
- The solution we have is the obvious brute-force algorithm
- Once a solution is found, we can check if it is correct in polynomial time
- This is a group of problems called NP-Complete

- The Competitive Facility Location Problem is a strategic decision problem where companies compete to place their facilities (e.g., stores, warehouses) in a market.
- The goal is to maximize market share, profit, or another performance measure while considering the actions of competitors.
- Constraints to consider in location decisions:
  - Proximity to consumers to minimize transportation costs.
  - Legal and environmental regulations affecting feasible locations.
  - Spatial strategies to counteract competitors' locations.
- Solution
  - No efficient solution,
  - Not even an efficient way of check a solution
  - Heuristic methods
  - Approximation methods

### Conclusion

- In this lecture we discussed
  - Stable Matching Problem
  - A greedy algorithm as a solution
  - Analysis of the proposed algorithm (less formal)
  - Correctness
  - Runtime complexity
- Next lecture
  - No class on Monday
  - Algorithm Analysis
  - Read Chapter 2 of the textbook
  - Lecture note will be provided as a reference

# Questions?

Slide adaåpted from T. M. Murali with additional content from "Algorithm Design" Jon Kleinberg and Eva Tardos - Addison Wesley (2005)